
Ibex PDF Creator

.NET Programmers Guide

For Ibex version 6.11.1.3

Table of Contents

i

1. Introduction .. 1

2. Installation ... 5

3. Getting Started with Ibex ... 9

4. Introduction to XSL-FO .. 13

5. Using Ibex .. 31

6. Error Handling & Logging .. 35

7. Page Layout ... 39

8. Text Formatting .. 49

9. Fonts .. 61

10. Floats ... 63

11. Space Handling ... 67

12. Colors .. 71

13. Lists ... 75

14. Tables .. 79

15. Images ... 93

16. Scalable Vector Graphics (SVG) images ... 105

17. Absolute Positioning .. 119

18. Columns .. 123

19. Bookmarks .. 125

20. Configuration ... 127

21. Extensions ... 131

22. Accessiblity and PDF/UA ... 139

23. PDF/X .. 151

© 2002-2026 Visual Programming Limited. All rights reserved.

NOTICE: All information contained herein is the property of Visual Programming Limited.

No part of this publication (whether in hardcopy or electronic form) may be reproduced or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written consent of the publisher.

PostScript is a registered trademark of Adobe Systems Incorporated. Adobe, the Adobe logo,
Acrobat, the Acrobat logo, Adobe Garamond, Aldus, Distiller, Extreme, FrameMaker,
Illustrator, InDesign, Minion, Myriad, PageMaker, Photoshop, Poetica, and PostScript are
trademarks of Adobe Systems Incorporated. Apple, Mac, Macintosh, QuickDraw, and
TrueType are trademarks of Apple Computer, Inc., registered in the United States and other
countries. ITC Zapf Dingbats is a registered trademark of International Typeface Corporation.
Helvetica and Times are registered trademarks of Linotype-Hell AG and/or its subsidiaries.
Microsoft and Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Times New Roman is a trademark of
The Monotype Corporation registered in the U.S. Patent and Trademark Office and may be
registered in certain other jurisdictions. Unicode is a registered trademark of Unicode, Inc. All
other trademarks are the property of their respective owners.

This publication and the information herein are furnished AS IS, are subject to change
without notice, and should not be construed as a commitment by Visual Programming
Limited. Visual Programming Limited assumes no responsibility or liability for any errors or
inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to
this publication, and expressly disclaims any and all warranties of merchantability, fitness for
particular purposes, and noninfringement of third-party rights.

Introduction 1

Chapter 1

Introduction
This manual describes the functionality and use of the Ibex PDF Creator. Ibex is a PDF
creation component which can be used from the command line or, more usually,
integrated into a larger application. It ships as a .Net assembly so it can be used both in
stand-alone applications and in server-based applications using ASP and ASP.Net.

This chapter provides an overview of how Ibex works and the process involved in
creating PDF files using Ibex.

1.1 The PDF creation process
Ibex creates PDF files which contain data from your application. You provide Ibex with
your data in XML format and Ibex creates a PDF file containing that data. The format of
the PDF file is specified using an XSL stylesheet which defines the layout of the
document using the elements from the XSL Formatting Objects standard.

The XML you provide to Ibex can come from any source. Typically, it is extracted from a
database or generated dynamically for each document.

The formatting objects (FO) standard defines elements such as table, row and cell which
can be used to lay out your data on a page. It also defines objects for describing the
overall shape and layout of the page, including parameters such as page size, number of
columns and regions such as headers and footers where content will be placed on the
page.

The process of creating a document in FO format is carried out using an XSLT stylesheet.
The stylesheet transforms your XML data into standard FO syntax. Ibex then reads that
XSL-FO and creates the PDF file. The actual execution of the XSLT translation can be
done either by Ibex, which uses the .Net framework XSL translation objects, or
externally to Ibex using any XSLT engine.

Figure 1-1 shows some XML data for creating a page which says "Hello world". The
corresponding formatting objects from which the PDF is created are shown in Figure 1-2.

Figure 1-1:
Simple XML

<?xml version="1.0" encoding="UTF-8"?>
<expression>hello world<expression>

https://www.w3.org/TR/xsl/
https://www.w3.org/TR/xsl/
https://www.w3.org/TR/xsl/
https://www.w3.org/TR/xsl/

Ibex PDF Creator Developers Guide

2 Introduction

Figure 1-2:
Example formatting

objects for hello
world

<root xmlns="http://www.w3.org/1999/XSL/Format">
<layout-master-set>
<simple-page-master master-name="layout" page-width="8.5in" page-height="8in">
<region-body region-name="body" margin="2.5cm"/>
</simple-page-master>
</layout-master-set>
<page-sequence master-reference="layout">
<flow flow-name="body">
<block>Hello world</block>
</flow>
</page-sequence>
</root>

The process of getting from your data to the formatting objects is carried out using the
XSLT stylesheet which you provide.

This approach to PDF creation has a number of advantages:

• the content and presentation are separated. The format of the PDF file is defined by
the XSLT stylesheet which can be created and maintained externally to the
application. Changing the stylesheet to alter the report layout does not require
rebuilding your application;

• formatting elements such as report headers and footers can be maintained in a
separate stylesheet which is included at runtime into many different reports;

• the formatting objects standard defines a powerful set of objects for creating page
content. It supports single-column and multi-column pages, bookmarks, indexing,
page headers and footers, complex page numbering, tables with optionally repeating
headers and footers and many other features;

• formatting objects is a high-level approach which makes changing report layouts
simple. For example to change the number of columns on a multi-column page you
just need to change the column-count attribute on a single element. To do this using a
lower level programmatic API is much more complex.

1.2 Terminology
Ibex uses the FO standard which defines formatting objects such as table and table-cell.
FO makes a distinction between two types of objects:

block-level objects broadly speaking these are objects which are formatted
vertically down the page. Block level objects are fo:block,
fo:block-container, fo:table, fo:table-and-caption, and
fo:list-block.

inline-level objects these are objects whose content is placed on lines within an
fo:block object. Commonly used inline level objects are

Ibex PDF Creator Developers Guide

Introduction 3

fo:external-graphic, fo:inline, fo:leader, fo:page-number,
fo:page-number-citation and fo:basic-link.

1.3 About this manual
This manual is split into two main sections. The first covers an introduction to the use of
formatting objects and an overview of various formatting objects such as tables and
lists. The second is a reference section listing all the available objects and attributes with
many examples of their usage.

This manual was produced with the .Net version of Ibex, release 6.11.1.3 .

1.4 About Ibex
Ibex is developed entirely in C# and requires the Microsoft dotnet runtime to be
installed. .Net Framework 4.8 and .Net 6.0 - 10.0 are supported. All operating systems
which support dotnet are supported by Ibex.

4 Introduction

Installation 5

Chapter 2

Installation

2.1 Ibex for .Net 6, .Net 7, .Net 8, .Net 9, .Net 10

The latest version of Ibex works on .Net 6, 7, 8 and 9. This version works on Windows
and Linux operating systems.

Ibex is installed as from nuget.org as two separate components, the PDF creation
library, and the command line interface.

2.1.1 Ibex.PDF.Creator

The Ibex.PDF.Creator package contains the library which you will link to your own
application. This can be downloaded either using the "Manage Nuget Packages" menu
option from within Visual Studio or using the "dotnet add package" command on the
command line.

2.1.2 Ibex.CommandLine

The Ibex.CommandLine package is a console application to create PDF files from the
command line, for use during testing and development.

The Ibex.CommandLine package is a [dotnet tool]. This is installed from a command
shell like so:

dotnet tool install -g Ibex.CommandLine

An existing installation can be updated using this command:

dotnet tool update -g Ibex.CommandLine

An existing installation can be uninstalled using this command:

dotnet tool uninstall --global Ibex.CommandLine

The Ibex.CommandLine tool, when it is installed as a dotnet global tool, is accessed
using the command "ibex". So for example if we had a file called 'test.fo' this command
would created a PDF file from it:

ibex test.fo test.pdf

https://www.nuget.org/packages/Ibex.PDF.Creator
https://www.nuget.org/packages/Ibex.CommandLine
https://docs.microsoft.com/nl-nl/dotnet/core/tools/global-tools
https://docs.microsoft.com/nl-nl/dotnet/core/tools/global-tools

Ibex PDF Creator Developers Guide

6 Installation

2.2 Installation for .Net Framework 4.8

The latest version of Ibex works on .Net Framework 4.8. This version works on Windows
operating systems.

.Net Framework 4.8 does not support the "dotnet tool" command line approach used
for .Net 6 and above. Instead here we show how to add the Ibex component to a
program using Visual Studio 2022 or 2026.

2.2.1 Creating a Project

Open Visual Studio 2022 or 2026, use the File > New > Project menu to open the project
creation dialog and select these options to create a .Net Framework based application:

Press "Next" and then name the project and specify its location and make sure to
choose ".Net Framework 4.8" as the framework.

Press "Create" to create the project. You should see this window showing the project
files in the Solution Explorer window (which might be on the left or the right side of the
screen) and the contents of the file Progam.cs.

2.2.2 Adding the Ibex component

Right-click the project name (in this case "IbexTest") and select "Manage Nuget
Packages..."

Ibex PDF Creator Developers Guide

Installation 7

Click on the "Browse" tab at the top of the window and type "ibex pdf creator" in the
search bar and press enter. This should show the Ibex.PDF.Creator package, click this
and the click the Install button on the far right:

After a few seconds and possibly some confirm dialog boxes, if you click on the
"Installed" tab you should see something like this, showing which components have
been added to the project:

If you want you can update some of these packages to the latest versions. **Do not**
update the version of SixLabors.ImageSharp to 3.1.4, this version only works with .Net 6
application it will not work with .Net Framework 4.8 applications.

2.2.3 Adding Code

Edit the file Program.cs and replace all its code with this code:

Ibex PDF Creator Developers Guide

8 Installation

using ibex4;
using System.IO;
using System.Text;

public class test
{

static void Main(string[] args)
{

string FO = "<fo:root xmlns:fo=\"http://www.w3.org/1999/XSL/Format\">"
+ "<fo:layout-master-set>"
+ " <fo:simple-page-master master-name=\"page\" margin=\"36pt\"

page-height=\"11in\" page-width=\"8in\">"
+ " <fo:region-body margin-top=\"78pt\"/>"
+ " </fo:simple-page-master>"
+ "</fo:layout-master-set>"
+ "<fo:page-sequence master-reference=\"page\">"
+ " <fo:flow font-family=\"Arial\" font-size=\"11pt\"

flow-name=\"xsl-region-body\">"
+ " <fo:block border=\"1pt solid green\">Hello World</fo:block>"
+ " </fo:flow>"
+ "</fo:page-sequence>"
+ "</fo:root>";

byte[] byteArray = Encoding.UTF8.GetBytes(FO);
MemoryStream inputStream = new MemoryStream(byteArray);
inputStream.Seek(0, SeekOrigin.Begin);

FODocument gen = new FODocument();
using (FileStream pdfStream = new FileStream("test.pdf", FileMode.Create,

FileAccess.Write))
{

gen.generate(inputStream, pdfStream);
}

}
}

Compile this program.

2.2.4 Testing

You should now be able to run the program and create the file "test.pdf". Depending on
the project setup this will appear in the current directory which might be for example in
bin\Debug.

Getting Started with Ibex 9

Chapter 3

Getting Started with Ibex
Although primarily intended for use as a part of a larger application, the Ibex installation
includes command line programs which creates PDF files from XML, XSLT and XSL-FO
files. We will use these programs to demonstrate the basics of PDF creation with Ibex.

Throughout this manual an XML file which uses the XSL formatting objects vocabulary is
referred to as an FO file or just the FO.

The command line syntax for all versions is the same. In these examples we use ibex.exe.

3.1 Ibex command line program usage
To create a PDF file from a FO file specify the names of the FO and PDF files on the
command line. For example to create hello.pdf from hello.fo you do this:

ibex hello.fo hello.pdf

If the names of the input and output files are the same (ignoring the extensions) you can
abbreviate this to:

ibex hello.fo

and if the file extension of the input file is "fo" or "xml" you can abbreviate even further
to:

ibex hello

3.2 Error logging
Any informational or error messages will be logged to the console. To send any error
messages to a file as well, use the -logfile option. For example, to log errors to the file
ibex.log the command becomes:

ibex -logfile ibex.log hello.fo hello.pdf

3.3 An example without XSLT translation
The Ibex command line program will create a PDF file from either (a) an FO file or (b) an
XML file with an XSLT stylesheet. This section shows how to create a PDF file from an FO
file.

Ibex PDF Creator Developers Guide

10 Getting Started with Ibex

This example uses the FO file hello.fo shown in Figure 3-1.

Figure 3-1:
Hello World FO

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="http://www.w3.org/1999/XSL/Format">

<layout-master-set>
<simple-page-master master-name="page">
<region-body margin="2.5cm" region-name="body"/>

</simple-page-master>
</layout-master-set>

<page-sequence master-reference="page">
<flow flow-name="body">
<block>Hello World</block>

</flow>
</page-sequence>

</root>

Each of the elements and attributes used in the file is explained later in the manual. For
now we just want to get started with using the Ibex command line program.

Using the command

ibex hello

creates the file hello.pdf containing the text "Hello World".

3.4 An example with XSLT translation
The Ibex command line program will create a PDF file from either (a) an FO file or (b) an
XML file with an XSLT stylesheet. This section shows how to create a PDF file from an
XML data file with an XSLT stylesheet.

Using Ibex without having Ibex do the XSLT transformation to create the FO is useful if
you have created the FO using another tool or if you just want to manually change some
FO to experiment with layout.

In practice XSLT is almost always part of the PDF creation process because XSL-FO lacks
some simple features such as being able to sequentially number headings. The designers
of XSL-FO presumed that XSLT would be used and so did not duplicate features already
in XSLT.

Ibex gives you the flexibility of having Ibex do the XSLT translation or having some other
tool do it. Internally Ibex uses the XSLT translation classes provided by .NET.

In this example we will translate some XML with an XSLT stylesheet and produce a PDF
from the result of the translation.

We have some weather forecast data in the file weather.xml. This file contains the XML
shown in Figure 3-2.

Figure 3-2:
Weather Forecast

Data

<?xml version="1.0" encoding="UTF-8"?>
<forecast>

<city name="Wellington" temp="20"/>
</forecast>

http://www.xmlpdf.com/manualfiles/hello.fo
http://www.xmlpdf.com/manualfiles/hello.pdf
http://www.xmlpdf.com/manualfiles/weather.xml

Ibex PDF Creator Developers Guide

Getting Started with Ibex 11

We also have an XSLT stylesheet weather.xsl which contains the XSL shown in Figure 3-3.

Figure 3-3:
Weather Forecast

Stylesheet

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format">

<xsl:strip-space elements="*"/>

<xsl:template match="forecast">

<root xmlns="http://www.w3.org/1999/XSL/Format">

<layout-master-set>
<simple-page-master master-name="page-layout">

<region-body margin="2.5cm" region-name="body"/>
</simple-page-master>

</layout-master-set>

<page-sequence master-reference="page-layout">
<flow flow-name="body">

<xsl:apply-templates select="city"/>
</flow>

</page-sequence>

</root>

</xsl:template>

<xsl:template match="city">
<fo:block>

<xsl:value-of select="@name"/>

<xsl:value-of select="@temp"/>

</fo:block>
</xsl:template>

</xsl:stylesheet>

This template outputs the root, layout-master-set and page-sequence elements. Then
for each city record in the data outputs a block element using the template shown in
Figure 3-4.

Figure 3-4:
weather-data-xsl-

subset

<xsl:template match="city">
<block>

<xsl:value-of select="@name"/>

<xsl:value-of select="@temp"/>

</block>
</xsl:template>

We can translate and format this example using the command:

ibex -xsl weather.xsl weather.xml weather.pdf

The result of this translation is the file weather.pdf

3.5 Required skills
To use Ibex you need know how to edit XSL stylesheets. Some familiarity with XSLT is
required, although in depth knowledge is not. The Ibex website contains examples of
using XSLT for common document related functions such as creating a table of contents.

http://www.xmlpdf.com/manualfiles/weather.xsl
http://www.xmlpdf.com/manualfiles/weather.pdf

Ibex PDF Creator Developers Guide

12 Getting Started with Ibex

Familiarity with XSL-FO is not required. This manual contains enough information to
enable you to produce complex documents using Ibex.

Introduction to XSL-FO 13

Chapter 4

Introduction to XSL-FO
This chapter provides an overview of formatting objects and provides some suggestions
on how to create PDF documents from XML files. We also look at the techniques for
using XSLT transformation to create FO files.

4.1 Layout of an FO file
A very simple FO file is shown in Figure 4-1:

Figure 4-1:
Simple FO file

<?xml version='1.0' encoding='UTF-8'?>
<root xmlns="http://www.w3.org/1999/XSL/Format">

<layout-master-set>
<simple-page-master master-name="simple">

<region-body margin="2.5cm" region-name="body"
background-color='#eeeeee'/>

</simple-page-master>
</layout-master-set>

<page-sequence master-reference="simple">
<flow flow-name="body">

<block>Hello World</block>
</flow>

</page-sequence>

</root>

This file is logically in three parts, namely the root, layout-master-set and page-sequence
parts. All FO files share this structure.

4.1.1 Namespaces

The examples used in this manual follow the style shown in Figure 4-1, where the XSL-FO
namespace is set (on the root element) as the default namespace for the file.
Namespace prefixes are not used for the FO elements such as block. Figure 4-2 shows
the same FO as Figure 4-1 but without the default namespace. Each element has the
"fo:" namespace prefix. The files shown in Figure 4-1 and Figure 4-2 both create the same
output and are treated equally by Ibex. Using namespaces is a matter of preference, it
does not effect performance.

Ibex PDF Creator Developers Guide

14 Introduction to XSL-FO

Figure 4-2:
Simple XML using the

fo prefix

<?xml version='1.0' encoding='UTF-8'?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>
<fo:simple-page-master master-name="simple">

<fo:region-body margin="2.5cm" region-name="body"
background-color='#eeeeee'/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference="simple">
<fo:flow flow-name="body">
<fo:block>Hello World</block>

</fo:flow>
</fo:page-sequence>

</fo:root>

4.1.2 The root element

The root element shown in Figure 4-3 contains the whole content of the file and
establishes the XSL-FO namespace as the default namespace. This element is the same
for all FO files.

Figure 4-3:
The root element

<root xmlns="http://www.w3.org/1999/XSL/Format">

Additional namespaces can be added to the xml element as shown in Figure 4-4.

Figure 4-4:
The root element with

additional
namespaces

<root xmlns="http://www.w3.org/1999/XSL/Format"
xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format"
xmlns:svg="xmlns="http://www.w3.org/2000/svg"

>

4.1.3 The layout-master-set element

The layout-master-set element show in Figure 4-5 defines the shape and layout of pages
in the document. Within the layout-master-set we have a simple-page-master element
which in turn contains the region-body element.

The simple-page-master defines the layout of one type of page and is uniquely identified
by its master-name attribute. The region-body element defines an area of the page
where content will be placed. A page can have more than one region so we give the
region a unique name "body" using the region-name attribute. This value is used with
flow elements to specify which content goes into which region on the page.

Figure 4-5:
The master-layout

element

<layout-master-set>
<simple-page-master master-name="simple">

<region-body margin="2.5cm" region-name="body"
background-color="#eeeeee"/>

</simple-page-master>
</layout-master-set>

A FO file contains one or more simple-page-master elements, each with a unique
master-name. In this simple example we have only one. Each simple-page-master
element creates a formatting object known as a page master.

Ibex PDF Creator Developers Guide

Introduction to XSL-FO 15

An example of a more complex document is the Ibex manual. Each chapter begins with a
page which has no header. This is followed by a page which has left-aligned footer, then
a page with a right-aligned footer. Each of the three possible page layouts is defined by a
different simple-page-master element.

4.1.4 The page-sequence element

The page-sequence element shown in Figure 4-6 defines a sequence of pages that will
appear in the PDF document. The master-reference attribute is used to tie the content of
the page-sequence to a particular page layout, in this case one defined previously using a
simple-page-master. When Ibex finds a page-sequence element it looks at the list of
known simple-page-master and page-sequence-master elements (we have no
page-sequence-master elements in this example) and finds one with a master-name
attribute which equals the master-reference attribute on the page-sequence. If Ibex
does not find a matching page master the FO file is invalid and Ibex will throw an
exception.

Figure 4-6:
The page-sequence

element

<page-sequence master-reference="simple">
<flow flow-name="body">

<block>Hello World</block>
</flow>

</page-sequence>

Within the page-sequence element we have a flow element. This holds the content
which will appear on one or more pages. A page can have multiple regions. To associate
content with a region we use the flow-name attribute on the flow element. In order for
the content contained in the flow to appear on the page, the flow-name of the flow
should match a region-name of one of the regions (in this example the region-body) on
the page.

If the flow-name of the flow does not match a region-name of one of the regions on the
page the content is not displayed on that page. This is not an error. It is a useful feature
and we show how to use it later in this chapter.

Looking at the FO in Figure 4-7, the underlined names must match each other, and the
names in italics should match if you want the content to appear.

Figure 4-7:
Matching

master-name and
master-reference

<layout-master-set>
<simple-page-master master-name="simple">

<region-body margin="2.5cm" region-name="body"
background-color='#eeeeee'/>

</simple-page-master>
</layout-master-set>

<page-sequence master-reference="simple">
<flow flow-name="body">

<block>Hello World</block>
</flow>

</page-sequence>

Within the flow element we can have one or more "block level" elements. These are
elements such as list, block and table which define the content to appear on the page. In
this example we have a single block element containing the text "Hello World".

Ibex PDF Creator Developers Guide

16 Introduction to XSL-FO

This produces a page like the one shown in Figure 4-8. The region created by the
region-body element has a shaded background so you can see how large it is.

Figure 4-8:
A basic page with a

region-body and some
text

4.2 Adding a footer region
In our example so far all the text contained in the flow element goes into the body
region in the center of the page. To add a page footer we need to define a new region
on the page and then define some new content to go into that region.

We define a footer region by adding a region-after element into the existing
simple-page-master as shown in Figure 4-9.

Figure 4-9:
Simple page master

with footer region

<layout-master-set>
<simple-page-master master-name="simple">

...
<region-after extent='1cm' region-name="footer"

background-color='#dddddd'/>
...

</simple-page-master>
</layout-master-set>

The region-after element defines an area on the page which extends the full width of the
page. If we had side regions (region-start and region-end) this might change, but in this
example we have no side regions.

The height of the region created by the region-after element is defined by the extent
attribute. In this example we have extent="1cm", so the region will be 1cm high and end
at the bottom of the page.

Ibex PDF Creator Developers Guide

Introduction to XSL-FO 17

Even without any content the footer region is still rendered on the page. Our page now
looks like the one in Figure 4-10.

Figure 4-10:
A basic page with a

footer region

In its current position on the page the footer region will not print on most printers
because they do not print right to the edge of the paper. We can define a margin around
the whole page by setting the margin attribute on the simple-page-master element of
the page-sequence as shown in Figure 4-11.

Figure 4-11:
Simple page master
with margin added

<layout-master-set>
<simple-page-master master-name="simple"

margin="2.5cm">
<region-body margin="2.5cm" region-name="body"

background-color="#eeeeee"/>
<region-after extent="1cm" region-name="footer"

background-color="#dddddd"/>
</simple-page-master>

</layout-master-set>

The area inside the margins of the simple-page-master is called the "content area". The
area covered by the regions (defined by the region-body and region-end) is measured
from the inside of the page's content area, so when we add margins to the
simple-page-master we reduce the size of the regions correspondingly.

Ibex PDF Creator Developers Guide

18 Introduction to XSL-FO

Our page now appears as shown in Figure 4-12.

Figure 4-12:
After adding margins

to the
simple-page-master

Now that we have some space on the sides of the body region we can remove the side
margins from the body by changing the definition from that shown in Figure 4-13 to the
one shown in Figure 4-14, resulting in the page layout shown in Figure 4-15.

Figure 4-13:
Body with side

margins

<region-body margin="2.5cm" region-name="body"
background-color="#eeeeee"/>

Figure 4-14:
Body without side

margins

<region-body margin-top="2.5cm" margin-bottom="2.5cm"
region-name="body" background-color="#eeeeee"/>

Ibex PDF Creator Developers Guide

Introduction to XSL-FO 19

Figure 4-15:
After removing the

left and right margins
from the region-body

The last thing we need to do to get a working page layout is to make the footer region
narrower by adding side regions. The left side region is created with a region-start
element and the right side with a region-end element as in Figure 4-16. We can also
specify the bottom-margin attribute of the body region so that it ends just where the
footer starts, by setting margin-bottom= "1cm" on the region-body element.

Figure 4-16:
side regions

<layout-master-set>
<simple-page-master master-name="simple"

margin='2.5cm'>
<region-body margin="2.5cm" margin-bottom='1cm'

region-name="body"
background-color='#eeeeee'/>

<region-after extent='1cm' region-name="footer"
background-color='#dddddd'/>

<region-start extent='2.5cm'/>
<region-end extent='2.5cm'/>

</simple-page-master>
</layout-master-set>

By default the side regions take precedence over the top and bottom regions so the top
and bottom regions become narrower. This gives us the page layout shown in
Figure 4-17, to which we can start adding some content.

Ibex PDF Creator Developers Guide

20 Introduction to XSL-FO

Figure 4-17:
With side regions to
reduce the width of

the footer

4.3 Attribute processing
The FO above also illustrates one of the ways in which XSL-FO handles attributes. We can
specify a shorthand attribute such as "margin", which has the effect of setting the
specific values margin-left, margin-right, margin-top and margin-bottom, and then
override just the specific value we want (by setting margin-bottom="1cm"). The order in
which the attributes are specified has no effect. A more specific setting will always
override a more general one. So the two examples in Figure 4-18 and Figure 4-19 produce
the same result.

Figure 4-18:
Shorthand and

specific attributes

<layout-master-set>
<simple-page-master master-name="simple">

<region-body margin="2.5cm" margin-bottom="1cm">
</simple-page-master>

</layout-master-set>

Figure 4-19:
Shorthand and

specific attributes

<layout-master-set>
<simple-page-master master-name="simple">

<region-body margin-bottom="1cm" margin="2.5cm">
</simple-page-master>

</layout-master-set>

4.4 Adding content to the footer
While content is added to the body of the page using the flow element, content is added
to other regions using the static-content element. The "static" part of the static-content
name refers to the fact that the content defined in this element stays within the region
specified on this page. It does not flow from one page to the next. If the content
exceeds the size of the region it will not flow to the next page.

Ibex PDF Creator Developers Guide

Introduction to XSL-FO 21

The content of the static-content is repeated on every page which has a region with a
matching flow-name (such as "footer"), and is typically different on every page as the
page number changes.

To insert a simple footer with the words "XSL-FO Example" we add a static-content
element as shown in Figure 4-20.

Figure 4-20:
Adding a

static-content
element

<?xml version='1.0' encoding='UTF-8'?>
<root xmlns="http://www.w3.org/1999/XSL/Format">

<layout-master-set>
<simple-page-master master-name="simple"

margin='2.5cm'>
<region-body margin="2.5cm" margin-bottom='1cm'

region-name="body" background-color='#eeeeee'/>
<region-after extent='1cm' region-name="footer"

background-color='#dddddd'/>
<region-start extent='2.5cm'/>
<region-end extent='2.5cm'/>

</simple-page-master>
</layout-master-set>
<page-sequence master-reference="simple">

<static-content flow-name="footer">
<block text-align='center'>
XSL-FO Example</block>

</static-content>
<flow flow-name="body">

<block>Hello World</block>
</flow>

</page-sequence>
</root>

Note that the order of the static-content and flow elements is important. All
static-content elements must come before any flow elements.

This FO produces the page shown in Figure 4-21.

Figure 4-21:
FO with static-content

Note that the flow-name of the static-content element and the region-name of the
region-after element must match for the content to appear. This feature makes it

Ibex PDF Creator Developers Guide

22 Introduction to XSL-FO

possible to have many static-content elements within the same page-sequence, and only
those which match regions in the current simple-page-master will be rendered.

The Ibex manual has three different page layouts defined with three different
simple-page-master elements. Each simple-page-master has a footer region with a
different region-name. The main flow element contains three different static-content
elements all containing footers. Only the footer whose flow-name matches the
region-name for the currently active simple-page-master will be rendered.

4.5 Adding the page number to the footer
To insert the current page number into the document use the page-number element
inside the static-content element as shown in Figure 4-22.

Figure 4-22:
Adding a page

number

<?xml version='1.0' encoding='UTF-8'?>
<root xmlns="http://www.w3.org/1999/XSL/Format">

<layout-master-set>
<simple-page-master master-name="simple"

margin='2.5cm'>
<region-body margin="2.5cm" margin-bottom='1cm'

region-name="body" background-color='#eeeeee'/>
<region-after extent='1cm' region-name="footer"

background-color='#dddddd'/>
<region-start extent='2.5cm'/>
<region-end extent='2.5cm'/>

</simple-page-master>
</layout-master-set>
<page-sequence master-reference="simple">

<static-content flow-name="footer">
<block text-align='center'>
XSL-FO Example, page <page-number/>
</block>

</static-content>
<flow flow-name="body">

<block>Hello World</block>
</flow>

</page-sequence>
</root>

This FO produces the page shown in Figure 4-23.

Ibex PDF Creator Developers Guide

Introduction to XSL-FO 23

Figure 4-23:
Page with page

number

4.6 Adding the total page count to the footer
Adding the total page count (so we can have "page 3 of 5") is a two step process, based
on the use of the "id" attribute which uniquely identifies an FO element. We place a
block on the last page with the id of "last-page", and then we use the
page-number-citation element to get the number of the page on which that block appears
as our total number of pages.

Typically the block with the id of "last-page" is empty so a new page is not created at the
end of the document.

The FO for the last block in the document is shown in Figure 4-24, and the FO to retrieve
the last page number and put it in the footer is shown in Figure 4-25.

Figure 4-24:
Block with id for last

page

<block id="last-page"/>

Figure 4-25:
FO to retrieve the

page number of the
identified block

<page-number-citation ref-id="last-page"/>

You can see how the id and ref-id values match. This is how Ibex associates the two
elements and knows from which block to retrieve the page number.

Ibex PDF Creator Developers Guide

24 Introduction to XSL-FO

So bringing all these elements together we have the FO shown in Figure 4-26.

Figure 4-26:
Complete FO to

display total page
count

<?xml version='1.0' encoding='UTF-8'?>
<root xmlns="http://www.w3.org/1999/XSL/Format">

<layout-master-set>
<simple-page-master master-name="simple"

margin='2.5cm'>
<region-body margin="2.5cm" margin-bottom='1cm'

region-name="body" background-color='#eeeeee'/>
<region-after extent='1cm' region-name="footer"

background-color='#dddddd'/>
<region-start extent='2.5cm'/>
<region-end extent='2.5cm'/>

</simple-page-master>
</layout-master-set>
<page-sequence master-reference="simple">

<static-content flow-name="footer">
<block text-align='center'>
XSL-FO Example, page <page-number/>
of <page-number-citation ref-id='last-page'/>
</block>

</static-content>
<flow flow-name="body">

<block>Hello World</block>
<block id='last-page'/>

</flow>
</page-sequence>

</root>

This FO produces the page shown in Figure 4-27.

Figure 4-27:
Page with page

number and total
page count

4.7 Adding text content
Text is added to the body region of the page by using the block element. A block
element can contain any amount of text and has attributes which define how the text
will appear. These attributes are described in more detail later in the manual.

Ibex PDF Creator Developers Guide

Introduction to XSL-FO 25

A block can contain text as shown in Figure 4-28.

Figure 4-28:
Text in a block

<flow flow-name="body">
<block>Hello World</block>

</flow>

A block element can also contain other block elements which in turn contain text or
more nested elements. Figure 4-29 shows a block which contains another block with a
different font, set using the font attribute.

Figure 4-29:
Nested blocks

<flow flow-name="body">
<block>

Hello World
<block font-size="16pt">

this is a nested block
</block>

</block>
</flow>

There is no limit to the nesting of block elements.

4.8 Using borders and padding
Many FO elements can have a border around the area they create on the page. If the
border around an element is the same on all four sides then it can be defined with a
single use of the border attribute. The space between a border and the content of the
block (in this case the text) is controlled using the padding attribute. Figure 4-30 shows
FO for a block with border and padding.

Figure 4-30:
Block with border and

padding

<flow flow-name="body">
<block background-color='#eeeeee'>

<block>
Hello World

</block>
<block border='1pt solid red' padding='3pt'>

Hello World
</block>

</block>
</flow>

This example has two block elements nested inside an outer element, with a background
color set on the outer element to highlight the area created by the outer block. The
block created from this FO is shown in Figure 4-31.

Figure 4-31:
Default indentation

of nested blocks

Hello World

Hello World

Ibex positions the content of the block (in this case the text) relative to the edge of the
region. After positioning the content, the padding and borders are positioned relative to
the position of the content. This places the padding and borders outside the content
area of the block. The contents of the block are not indented, rather the padding and
borders extend outside the block. This is the default behavior of XSL-FO formatters.

Ibex PDF Creator Developers Guide

26 Introduction to XSL-FO

If you prefer Cascading Style Sheets (CSS) compatible behavior where adding a border
to a block indents its content, you can specify the left-margin and right-margin attributes
to force this to happen. Even if the left-margin and right-margin values are zero, CSS
type indentation will still occur. The XML for this is shown in Figure 4-32 and the resulting
output is shown in Figure 4-33.

Figure 4-32:
Block with margins

specified

<flow flow-name="body">
<block background-color='#eeeeee'>

<block>
Hello World

</block>
<block border='1pt solid red' padding='3pt' margin-left="0" margin-right="0">
Hello World

</block>
</block>

</flow>

Figure 4-33:
Default indentation

of nested blocks

Hello World

Hello World

4.9 Creating lists
A list is content divided into two columns. Each item in the list is in two parts, called the
label and the body respectively. A list is created with the list-block element. A list-block
contains one or more list-item elements, each of which contains exactly one
list-item-label element and one list-item-body element.

An example of a simple list is shown in Figure 4-34.
Figure 4-34:

Example of list-block
• this is item one
• this is item two

Ibex PDF Creator Developers Guide

Introduction to XSL-FO 27

This list was created with the FO shown in Figure 4-35:

Figure 4-35:
FO for the list-block

<list-block
margin-left='3cm' margin-right='3cm' padding='3pt'
border='.1pt solid blue'
provisional-distance-between-starts='0.5cm'
provisional-label-separation='0.1cm'>
<list-item>

<list-item-label end-indent='label-end()'>
<block>•</block>

</list-item-label>
<list-item-body start-indent='body-start()'>

<block>this is item one</block>
</list-item-body>

</list-item>

<list-item>
<list-item-label end-indent='label-end()'>

<block>•</block>
</list-item-label>
<list-item-body start-indent='body-start()'>

<block>this is item two</block>
</list-item-body>

</list-item>
</list-block>

A list sets the two columns to widths specified using the attributes of the list-block
elements. The provisional-distance-between-starts attribute specifies the distance
between the start of the label column and the start of the body column. The
provisional-label-separation attribute sets how much of the label column should be left
empty to provide a blank space between the columns.

If we expand the above example and add more content to the first body we can see that
the content is constrained to the column. If we add content to the first list-item-body as
shown in Figure 4-36 we get the list shown in Figure 4-37.

Figure 4-36:
FO for the list-block

<list-item-body start-indent='body-start()'>
<block>

If your Network Administrator has enabled it,
Microsoft Windows can examine your network and
automatically discover network connection settings.

</block>
</list-item-body>

Figure 4-37:
Output for the

list-block • If your Network Administrator has enabled it,
Microsoft Windows can examine your network
and automatically discover network connection
settings.

• this is item two

For more information on lists see page 75.

4.10 Creating tables
A table is created using the table element. Within the table element there can be one
table-header element, any number of table-body elements (which contain the rows) and
one table-footer element. Each of the table-header, table-body and table-footer

Ibex PDF Creator Developers Guide

28 Introduction to XSL-FO

elements contains one or more table-row elements, each containing one or more
table-cell elements which in turn contain block-level elements such as block, table and
list-block.

Since a table-cell can contain any block-level element you can easily create tables which
contain text, nested tables or lists. Table headers and footers defined with the
table-header and table-footer elements are automatically repeated at each page break,
although this can be suppressed if required.

Figure 4-38 shows the FO for a simple table and Figure 4-39 shows the table created
from the FO.

Figure 4-38:
FO for a table

<table>
<table-body>

<table-row>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 1 column 1</block>
</table-cell>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 1 column 2</block>
</table-cell>

</table-row>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 1 column 1</block>
</table-cell>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 1 column 2</block>
</table-cell>

</table-row>
</table-body>

</table>

This FO produces the table shown in Figure 4-39.
Figure 4-39:

Simple table from
the above FO

row 1 column 1 row 1 column 2

row 2 column 1 row 2 column 2

The padding and border attributes are not inherited from containing elements so must
be defined on the table-cell elements.

4.10.1 Setting table column widths

The width of a table column is set using the table-column element. A table element
contains zero or more table-column elements each of which defines properties such as
width and background-color for a column in the table.

To make the first column 30% of the table width we would add table-column elements as
shown in Figure 4-40, which creates the output shown in Figure 4-41.

Ibex PDF Creator Developers Guide

Introduction to XSL-FO 29

Figure 4-40:
Table with

table-column
elements

<table>

<table-column column-width='30%' column-number='1'/>
<table-column column-width='70%' column-number='2'/>

<table-body>
<table-row>

<table-cell border='1pt solid blue' padding='2pt'>
<block>row 1 column 1</block>

</table-cell>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 1 column 2</block>
</table-cell>

</table-row>
<table-row>

<table-cell border='1pt solid blue' padding='2pt'>
<block>row 1 column 1</block>

</table-cell>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 1 column 2</block>
</table-cell>

</table-row>
</table-body>

</table>

Figure 4-41:
Rendered table with

specified widths

row 1 column 1 row 1 column 2

row 2 column 1 row 2 column 2

For more information on tables see page 79.

30 Introduction to XSL-FO

Using Ibex 31

Chapter 5

Using Ibex
This chapter describes how to call the Ibex API and how to use the accompanying
command line program.

5.1 Ibex command line program
Although primarily intended to be used as a part of a larger application, Ibex ships with a
command line program which can be used to create PDF files from FO files.

The command line programs shipped with Ibex are ibex10.exe (which uses .NET 1.0),
ibex11.exe (which uses .NET 1.1) and ibex.exe (which uses .NET 2.0).

The command line syntax is the same for all programs. In these examples we use
ibex.exe.

To create a PDF file from an FO file specify the file names on the command line. For
instance to create hello.pdf from hello.fo, you do this:

ibex hello.fo hello.pdf

5.1.1 XSLT translation

The command line program will accept XML data and an XSLT stylesheet as inputs. The
XML will be translated to FO by the stylesheet and the results then formatted to PDF.
The command line syntax is:

ibex -xsl xsl-file xml-file pdf-file

So to create a PDF file from the files book.xml and book.xsl, the command is:

ibex -xsl book.xsl book.xml book.pdf

XSLT parameters can be passed to the stylesheet by adding them as name-value pairs to
the command line. For instance, if we want to define the parameter called "age" to the
value "30" we use a command like this:

ibex -xsl book.xsl book.xml hello.pdf "age=30"

The use of the double quotes around the name-value pair is necessary on some
operating systems to force them to come through as a single parameter to the Ibex
program.

Ibex PDF Creator Developers Guide

32 Using Ibex

5.1.2 Logging from the command line

Any informational or error messages will be logged to the console. To send error
messages to a file as well, use the -logfile option. For example to log errors to the file
ibex.log, you would do this:

ibex -logfile ibex.log hello.fo hello.pdf

5.1.3 Listing available fonts

You can also list the fonts which are available (based on what fonts are installed on your
system) by using the -fonts option like this:

ibex -fonts

The list of fonts is produced as a FO file to the standard output. This can be redirected to
a file and then used as input to Ibex to create a PDF file containing a table which looks
like this:

The list of fonts can be limited to fonts whose name contains a specified string by
passing the string on the command line. For instance if we wanted to see what versions
of "arial" are installed, we can use the command:

ibex -fonts arial

5.2 The Ibex API
A PDF document is generated using the FODocument object which is in the ibex4
namespace.

First you create a new FODocument object and then calling the generate() method on
that object. The generate() method has various versions which take different
parameters depending on whether the input is from files or streams and whether XSLT
translation should occur.

The FODocument object is not thread safe. A new FODcoument should be created for
each PDF file to be created. Ibex does support creating multiple PDF files concurrently
on multiple threads, as long as each PDF file is associated with a unique FODocument
instance.

Example C# code to convert the file "manual.fo" to "manual.pdf" the code is shown in
Figure 5-1, the equivalent VB.NET code is in Figure 5-2.

Ibex PDF Creator Developers Guide

Using Ibex 33

Figure 5-1:
C# code to create a
PDF from an FO file

using System;
using ibex4;

public class Simple {

static void Main(string[] args) {

FODocument doc = new FODocument();

gen.generate("manual.fo", "manual.pdf");
}

}

Figure 5-2:
VB.NET code to create

a PDF from an FO file

Imports System
Imports ibex4

Module Module1

Sub Main()

Dim doc As New FODocument

doc.generate("manual.fo", "manual.pdf")

End Sub

End Module

Projects need to have a reference to the ibex DLL.

5.2.1 Generating to File

public void generate(string fo_file_name, string pdf_file_name)

This will read the FO contained in the file named in pdf_file_name and create the PDF file
named in pdf_file_name.

5.2.2 Generating using streams

public void generate(Stream fo_stream, Stream pdf_stream)

public void generate(Stream fo_stream, Stream pdf_stream, bool close_stream)

This will read the FO from the System.IO.Stream called fo_stream and create the PDF file
into the System.IO.Stream pdf_stream. These streams can be anything derived from
System.IO.Stream, such as System.IO.FileStream or System.IO.MemoryStream.

If close_stream is true the PDF stream will be closed after the PDF file is generated, if
false it will not. By default the stream is closed. Not closing the stream is useful if you are
generating to a MemoryStream object as the bytes cannot be read from the
MemoryStream if it has been closed.

Ibex PDF Creator Developers Guide

34 Using Ibex

5.2.3 Generating a PDF from XML and XSL

These methods take XML, an XSLT stylesheet, and a stream to write the resulting PDF
file to.

public void generate(Stream xml_stream, Stream xsl_stream, Stream pdf_stream)

public void generate(Stream xml_stream, Stream xsl_stream, Stream pdf_stream, bool
closeStream)

Ibex uses the .NET XSLT processor to transform the XML using the specified stylesheet
and passes the resulting FO to the PDF creation routines. XSLT transformation is faster
or more efficient in .NET 2.0 and later and we recommend using this version or later if
possible.

5.2.4 Generate a PDF from XML and XSL with parameters

These methods are similar to the ones in the previous section but take an additional
hashtable which (if not null) should contain name-value pairs which are then passed as
arguments to the XSLT translation process.

public void generate(Stream xml_stream, Stream xsl_stream, Stream pdf_stream,
bool close_stream, Hashtable params)

Error Handling & Logging 35

Chapter 6

Error Handling & Logging
This chapter describes error handling using the Ibex API.

Ibex associates an error handler with the library as a whole. Generally this error handler
will log a message and not throw an exception.

The Ibex Logger object is a singleton which is retrieved using a call to the
ibex4.logging.Logger.getLogger() method. Typically you would import the ibex4.logging
namespace and then access the logger as shown in Figure 6-1.

Figure 6-1:
Clearing existing

error handlers

using ibex4.logging;

void sumfunc() {
Logger.getLogger().clearHandlers();

}

The default error handler writes messages to the console. Messages are displayed in
various circumstances including:

• when an invalid attribute is found;

• when a reference is made to a font or image file which cannot be found;

• when a formatting error occurs, such as defining the widths of columns in table that
exceed the available width.

As the Ibex Logger is a singleton object, logging should be configured once at the start
of an application, not on a per-document basis.

6.1 Error severity
To change the level of information logged you can set the level on the logging object to
one of the values defined in the ibex4.logging.Level object. Possible levels of logging
which can be set are:

SEVERE WARNING INFO CONFIG FINE FINER FINEST

An example of how to set the logger to log only messages which are WARNING or worse
is shown in Figure 6-2.

Ibex PDF Creator Developers Guide

36 Error Handling & Logging

Figure 6-2:
Setting the error

level

using System;

using ibex4;
using ibex4.logging;

public class Create {

public static void Main(string[] args) {

PDFDocument doc = new PDFDocument();

Logger.getLogger().setLevel(Level.WARNING);

6.2 Logging to a file
To log messages to a file, create an ibex4.logging.FileHandler object and then tell the
logger to log to this object. The example in Figure 6-3 logs to the file "log.txt", but any
valid file name can be used.

Figure 6-3:
Logging to a file

using System;
using ibex4;
using ibex4.logging;

public class Create {

public static void Main(string[] args) {

Logger.getLogger()
.setLevel(Level.SEVERE)
.clearHandlers()
.addHandler(
new FileHandler("log.txt"));

The FileHandler object synchronises access to the log file.

If you omit the clearHandlers() call shown in the above example, log records will be
written to the default console handler and also to the file handler. You will see error
messages on the console and they will also be written to the file.

6.3 Logging to a stream
Ibex can log messages to a stream created by the caller. The stream is any object which
implements the System.IO.Stream interface.

To log messages to a stream, create an ibex4.logging.StreamHandler object and then tell
the logger to log to this object. The example in Figure 6-4 logs to a MemoryStream, but
any valid stream can be used.

Figure 6-4:
Logging to a stream

using System;
using System.IO;
using ibex4;
using ibex4.logging;

public class Create {

public static void Main(string[] args) {

Logger.getLogger().clearHandlers();
MemoryStream stream = new MemoryStream();
StreamHandler h = new StreamHandler(stream);
Logger.getLogger().addHandler(h)

Ibex PDF Creator Developers Guide

Error Handling & Logging 37

If you omit the clearHandlers() call shown in the above example log records will be
written to the default console handler and to the stream handler as well.

6.4 Logging to multiple destinations
Errors can be logged to any number of handlers. The example in Figure 6-5 logs to a file
called "xslfo.log", to a memory stream and to the console.

Figure 6-5:
Logging to multiple

destinations

using System;
using System.IO;

using ibex4;
using ibex4.logging;

public class Create {

public static void Main(string[] args) {

MemoryStream stream = new MemoryStream();

Logger.getLogger()
.addHandler(new ConsoleHandler())
.addHandler(new StreamHandler(stream))
.addHandler(new FileHandler("xslfo.log"));

}
}

38 Error Handling & Logging

Page Layout 39

Chapter 7

Page Layout
This chapter describes how to configure the size of a page and position the regions in
which content appears.

7.1 Using one layout for all pages
The first element in any FO file is the root element which contains the whole FO tree
defining the document and declares the XML namespaces used. Figure 7-1 shows a
simple FO file.

Figure 7-1:
Simple FO file

<root xmlns="http://www.w3.org/1999/XSL/Format">
<layout-master-set>

<simple-page-master master-name="layout" page-width="8.5in" page-height="8in">
<region-body region-name="body" margin="2.5cm"/>

</simple-page-master>
</layout-master-set>
<page-sequence master-reference="layout">

<flow flow-name="body">
<block>Hello world</block>

</flow>
</page-sequence>

</root>

The first FO element within the root element is the layout-master-set element. This
contains one or more simple-page-master elements which define the layout of a page,
including the width and height.

The simple-page-master element is like a template for a page, defining the page size and
the areas on the page into which content will be placed. As content is read from a flow,
Ibex decides which simple-page-master to use as the basis for creating the current page.
If there is only one simple-page-master then it is always used. If there are several
simple-page-masters then a selection process is used to see which one applies to the
current page.

The simple-page-master element contains region elements such as region-body which
define an area on the page which can be filled with text or image content.

There can be any number of simple-page-master elements provided each has a unique
master-name attribute.

Figure 7-2 shows an example of a layout-master-set.

Ibex PDF Creator Developers Guide

40 Page Layout

Figure 7-2:
Example

layout-master-set

<layout-master-set>
<simple-page-master master-name="front-page">
<region-body margin-right="2.5cm"

margin-left="4cm"
margin-bottom="4cm"
margin-top="4cm" region-name="body"

background-color="#eeeeee"/>
<region-after extent="3cm" region-name="footer"

background-color='#dddddd'/>
</simple-page-master>

</layout-master-set>

This shows a layout-master-set which contains a single simple-page-master with a
master-name of "front-page".

This simple-page-master defines a page which has two regions on which content can be
printed. A page defined with this layout appears in the examples at the end of this
chapter, on page 45. For the purposes of this example the regions have
background-colors defined to show them clearly. More complex layouts showing five
regions appear in the examples on page 45.

Having defined a page layout which has a name, (defined by its master-name attribute)
we then use the page-sequence element to define the content of the document. The
page-sequence element has a master-name attribute which should match the
master-name defined for a simple-page-master (or a page-sequence-master, more of
which later).

A page-sequence for printing "Hello World" is shown in Figure 7-3.

Figure 7-3:
page-sequence for

hello world

<page-sequence master-reference="front-page">
<flow flow-name="body">
<block>Hello World</block>

</flow>
</page-sequence>

A key thing to note is that the content of the page-sequence is contained in a flow
element. For content of the flow to appear on the PDF page the flow-name attribute of
the flow element must match the region-name of a region on the page master specified by
the master-reference on the page-sequence. If the flow-name does not match a
region-name, none of the content of this flow will appear in the output document.

It is important to understand this feature. It means that a page-sequence can contain
multiple flow and static-content elements each containing a flow element with a
different flow-name. Only flow elements whose flow-name attribute matches a
region-name defined in the current page sequence will appear. This is how we produce
different formats for odd and even pages.

Figure 7-4 shows in matching colors the attributes which should match for content to
appear.

Ibex PDF Creator Developers Guide

Page Layout 41

Figure 7-4:
Matching flow and

region names

<root xmlns="http://www.w3.org/1999/XSL/Format">
<layout-master-set>
<simple-page-master master-name="front-page">

<region-body margin-right="2.5cm"
margin-left="4cm"
margin-bottom="4cm"
margin-top="4cm" region-name="body"/>

<region-after extent="3cm" region-name="footer"/>
</simple-page-master>

</layout-master-set>

<page-sequence master-reference="front-page">
<flow flow-name="body">

<block>Hello World</block>
</flow>

</page-sequence>
</root>

7.2 Using different layouts for different pages
It is possible to define different page layouts for different pages. This can be done in two
possible ways, either by assigning different page masters to different page sequences,
or by using a page-master-alternatives element which chooses from a set of
simple-page-master elements based on criteria such as the current page number.

7.2.1 Using different page masters for each page sequence

Using a different page master for each page sequence is useful when you can clearly
divide the document into distinct sections. For example, this manual has a different page
master for the front cover and for the pages in the table of contents. The page masters
for this are shown in Figure 7-5.

Figure 7-5:
Two page masters

<layout-master-set>

<simple-page-master master-name="front-page" margin="1.5cm" page-height="297mm"
page-width="210mm">

<region-body region-name="body" margin="0.75cm 0.5cm 0.75cm 3cm"/>
<region-before region-name="header" extent="2.5cm"/>
<region-after region-name="footer" extent="1cm"/>
<region-start extent="1cm" background-color="#eeeeee"/>

</simple-page-master>

<simple-page-master master-name="toc-page" margin="1.5cm" >
<region-body column-count="1" region-name="body" margin="0.75cm 0.5cm 1cm 3cm"

margin-left="2cm" margin-right="1.5cm" />
<region-before region-name="header" extent="1cm"/>
<region-after region-name="footer" extent="0.75cm"/>
<region-start extent="2cm" />
<region-end region-name="end" extent="1.5cm" />

</simple-page-master>

</layout-master-set>

Content is allocated to the two sections of the document using two separate
page-sequences, as shown in Figure 7-6.

Ibex PDF Creator Developers Guide

42 Page Layout

Figure 7-6:
Allocating content to

two page masters

<page-sequence master-reference="front-page">
<flow flow-name="body">

<block>
content that appears in the body of the front page

</block>
</flow>

</page-sequence>

<page-sequence master-reference="toc-page">
<flow flow-name="body">

<block>
content that appears in the table of contents

</block>
</flow>

</page-sequence>

When using this approach content from one flow always appears on pages with the
same layout. Flowing content across different page layouts is described in the next
section.

7.2.2 Using page master alternatives

Often it is desirable to have content flow continuously across pages with different
layouts. This is done in the Ibex manual, where the pages are laid out like this:

first page of chapter has no page header

page number is on the right of the footer

even numbered page has a page header

page number is on the left of the footer

odd numbered page has a page header

page number is on the right of the footer

The three page masters are shown in Figure 7-7.

Figure 7-7:
Page masters for

three different
layouts

<simple-page-master master-name="chapter-odd-no-header">
<region-body region-name="body" margin="2.5cm 2.5cm 2.5cm 4.0cm"/>
<region-after region-name="footer-odd" extent="1.5cm" display-align="before"/>

</simple-page-master>

<simple-page-master master-name="chapter-even">
<region-body region-name="body" margin="2.5cm 2.5cm 2.5cm 4.0cm" column-count="1"/>
<region-before region-name="header-even" extent="1.5cm" display-align="after"/>
<region-after region-name="footer-even" extent="1.5cm" display-align="before"/>

</simple-page-master>

<simple-page-master master-name="chapter-odd">
<region-body region-name="body" margin="2.5cm 2.5cm 2.5cm 4.0cm"/>
<region-before region-name="header-odd" extent="1.5cm" display-align="after"/>
<region-after region-name="footer-odd" extent="1.5cm" display-align="before"/>

</simple-page-master>

Ibex PDF Creator Developers Guide

Page Layout 43

To make content from a single flow element span multiple pages with different page
layouts we use a page-sequence-master element as shown in Figure 7-8. This element
contains a repeatable-page-master-alternatives element, which in turn contains a set of
conditional-page-master-reference elements.

When formatting content from a page-sequence which has flow-name="chapter", Ibex
looks at each of the conditional-page-master-reference elements and chooses which one
will be active for the current page. This is done by evaluating conditions specified with
the page-position attribute. As a page is created, each
conditional-page-master-reference is considered in turn, starting from the first one. The
first one found whose conditions are satisfied will determine the page master for the
current page. Since alternatives are considered in the order in which they appear in the
FO, the order in which the alternatives are listed is important.

When the first page of the chapter is being created, the page-position="first" condition
is true, so the first conditional-page-master-reference will be chosen because it has
page-position = "first". This has master-reference = "chapter-odd-no-header", so the
simple-page-master with master-name = "chapter-odd-no-header" becomes the active
page master for the first page of the chapter.

When the second page of the chapter is being created, the page-position="first" is no
longer true so the conditions on the next conditional-page-master-reference will be
evaluated.

Although not shown in this example, other attributes such as blank-or-not-blank can be
used to control the selection of one of the alternatives.

Figure 7-8:
The

page-sequence-
master element

<page-sequence-master master-name="chapter" >
<repeatable-page-master-alternatives>

<conditional-page-master-reference page-position="first"
master-reference="chapter-odd-no-header"/>

<conditional-page-master-reference odd-or-even="odd"
master-reference="chapter-odd"/>

<conditional-page-master-reference odd-or-even="even"
master-reference="chapter-even"/>

</repeatable-page-master-alternatives>
</page-sequence-master>

44 Page Layout

region-before

region-after

region-body

This page layout is created with the XML below. Note that by default the region-start
and region-end regions extend the full height of the page and the region-before and
region-after regions are narrowed so as not to overlap the side regions. See the
following page for an example where the precedence attribute is used to change this.

<simple-page-master master-name="region-example-1">

<region-body margin="2.5cm" region-name="body"
background-color="#eeeeee"/>

<region-before extent="2.5cm" region-name="header"
background-color="#dddddd"/>

<region-after extent="2.5cm" region-name="footer"
background-color="#dddddd"/>

<region-start extent="2.5cm" region-name="start"
background-color="#aaaaaa"/>

<region-end extent="2.5cm" region-name="end"
background-color="#aaaaaa"/>

</simple-page-master>

Layout examples 45

region-before region-example-1-margins

region-after

region-body

This page layout is created with the XML below. Note that
by default the region-start and region-end regions extend
the full height of the page and the region-before and
region-after regions are narrowed so as not to overlap the
side regions. See the following page for an example where
the precedence attribute is used to change this.
This layout differs from the previous page in that the
simple-page-master has the margin attribute set to
"2.5cm". This creates a margin of 2.5cm around the entire
page, and regions are positioned with respect to the
rectangle created by the margins, not with respect to the
edges of the paper.

<simple-page-master
master-name="region-example-1M" margin="2.5cm">

<region-body margin="2.5cm"
region-name="body"

background-color="#eeeeee"/>

<region-before extent="2.5cm"
region-name="header"

background-color="#dddddd"/>

<region-after extent="2.5cm"
region-name="footer"

background-color="#dddddd"/>

<region-start extent="2.5cm"
region-name="start"

background-color="#aaaaaa"/>

<region-end extent="2.5cm"
region-name="end"

background-color="#aaaaaa"/>

</simple-page-master>

46 Layout examples

region-before

region-after

region-body

This page layout is created with the XML below. Note that the region-before and
region-after regions have precedence="true" so they extend the full width of the page
and the side regions are reduced in height to the regions do not overlap.

<simple-page-master master-name="region-example-1">

<region-body margin="2.5cm" region-name="body"
background-color="#eeeeee"/>

<region-before extent="2.5cm" region-name="header"
precedence="true" background-color="#dddddd"/>

<region-after extent="2.5cm" region-name="footer"
precedence="true" background-color="#dddddd"/>

<region-start extent="2.5cm" region-name="start"
background-color="#aaaaaa"/>

<region-end extent="2.5cm" region-name="end"
background-color="#aaaaaa"/>

</simple-page-master>

Layout examples 47

48 Layout examples

Text Formatting 49

Chapter 8

Text Formatting
Text is created in the output document using the block element.

The simplest possible block is shown in Figure 8-1.

Figure 8-1:
A simple block

<block>hello world</block>

This creates a paragraph in the output document which has the default font (which is
helvetica) and the default alignment (which is left).

The sections below describe elements and attributes used to control the formatting of
text.

8.1 Using the font attribute
The quickest way to get the font you require is to use the font attribute, as shown in
Figure 8-2.

Figure 8-2:
Using the font

attribute

<block font="bold 12pt garamond">hello world</block>

Using the font attribute is simpler than specifying all the individual attributes such as
font-weight and font-size, but does need some care. When using the font attribute the
order of the words is important. The font style (normal, italic) and the font weight (bold,
normal) must come before the font size. The font name must come after the font size. If
the font name contains spaces, it must be enclosed in quotes, as shown in Figure 8-3.

Figure 8-3:
A font name with

spaces

<block font="bold 12pt "times new roman"">
hello world

</block>

The full syntax of the font attribute is shown in Figure 8-4.

Figure 8-4:
Syntax of font

attribute

[[<font-style> || <font-variant> || <font-weight>]?
<font-size> [/ <lineheight>]?
<font-family>]

Ibex PDF Creator Developers Guide

50 Text Formatting

8.2 Using the font-family attribute
The font-family attribute is used to specify the name of the font to use. More than one
font name can be listed. These names can be specific font names such as "times roman"
or "garamond", or generic names such as "monospace". Ibex will use the first name in
the list which matches a font on your system. Font names are separated by a comma.

The ability to list multiple font names derives from the CSS standard. It is designed to
support the creation of a web page which will be rendered on a computer that may not
have the same fonts installed as the page's author. In practice when you generate a PDF
file you know what fonts you have installed, so you will probably just specify one font.

8.3 Italic text
Text is made italic using the font-style attribute.

The font style can be "normal" or "italic". Other font values such as the font-family are
inherited from the current font, as shown in Figure 8-5. The output created by the FO in
Figure 8-5 is shown in Figure 8-6.

Figure 8-5:
Using font-style

<block font-family="arial">
hello <inline font-style="italic">world</inline>

</block>

Figure 8-6:
Using the font-style

attribute

hello world

8.4 Bold text
Text is made bold using the font-weight attribute.

The font weight can be "normal" or "bold", as shown in Figure 8-7. The output created
by the FO in Figure 8-7 is shown in Figure 8-8.

Figure 8-7:
Using the font-weight

attribute

<block font-family="arial">
hello <inline font-weight="bold">world</inline>

</block>

Figure 8-8:
Using font-weight

hello world

8.5 Text size
The size of text is set using the font-size attribute.

The font size specifies the size of the font and can be specified in a number of ways
listed below.

Ibex PDF Creator Developers Guide

Text Formatting 51

A numeric size

The most common approach is to specify the size you want in points, for example
font-size="12pt" or font-size="30pt".

An absolute size

Attribute Value Size
xx-small 7.0pt
x-small 8.3pt
small 10.0pt
medium 12.0pt
large 14.4pt
x-large 17.4pt
xx-large 20.7pt

A relative size

This sets the font size based on the size of the prevailing font.

Attribute Value Size
smaller existing size / 1.2
larger existing size * 1.2

Another way of setting the font size relative to the current font size is to use the "em"
unit. "1.0em" is the current font size, so "2.0em" specifies a size which is twice as big as
the current size.

8.6 Underlining text
Text is underlined using the text-decoration attribute.

Specifying text-decoration="underline" will cause text to be underlined, like this.

8.7 Striking out text
You can strike out text using the text-decoration attribute.

Specifying text-decoration="line-through" will cause text to be underlined, like this.

8.8 Horizontal alignment
Horizontal alignment is specified using the text-align attribute. The default alignment is
left.

Valid values for text-align are shown in the table below.

Value Effect
left text is aligned against the left edge of the block
right text is aligned against the right edge of the block

Ibex PDF Creator Developers Guide

52 Text Formatting

Value Effect
center text is centered in the middle of the block
justify text is aligned against both the left and right edges of the block.

Space is inserted between words to achieve this effect. Setting
text-align = "justify" does not align the last line of the paragraph,
this is done using text-align-last = "justify".

start text is aligned against the start edge, which for a block that is not
rotated, with the default left-to-right writing direction, is the left
edge.

end text is aligned against the end edge, which for a block that is not
rotated, with the default left-to-right writing direction, is the right
edge.

inside assuming the document is to be bound as a book, text is aligned
against the edge which is nearest the binding. For an
odd-numbered page this will be the left edge, for an even
numbered page it will be the right edge.

outside assuming the document is to be bound as a book, text is aligned
against the edge which is furtherest from the binding. For an
odd-numbered page this will be the right edge, for an even
numbered page it will be the left edge.

For text-align values of "inside" and "outside" the page number is used to determine the
binding edge, which is assumed to be the left hand edge of odd-numbered pages and
the right hand edge of even-numbered pages.

The effect of some of the text-align values is shown in Figure 8-9.
Figure 8-9:

Effects of text-align
values

This paragraph has no text-align attribute, so by default
is aligned to the left, so that the words form a smooth
line against the left margin and a ragged edge on the
right.

This paragraph has text-align="right" and so is aligned to
the right, so that the words form a smooth line against

the right margin and have a ragged edge on the left.

This paragraph has text-align="justify", so that the words
form a smooth line against both the left and right
margins, except for the last line which is aligned
independently using the text-align-last attribute.

This paragraph has text-align="center", so that the words
are centered in the middle of the block.

8.8.1 Justifying the last line of a paragraph

Specifying text-align="justify" will justify all lines of a paragraph except the last. This is
because a justified paragraph typically looks like the one in Figure 8-10, with the last line
not being justified.

Ibex PDF Creator Developers Guide

Text Formatting 53

Figure 8-10:
Paragraph without

the last line justified

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc mollis, turpis
vehicula aliquam auctor, metus turpis tempus justo, eu gravida nisl nibh vitae nisl.
Cras a nisl. Integer et metus vitae dui placerat egestas. Duis rutrum. Nulla in
enim. Suspendisse vel massa in mauris sagittis pharetra. Etiam hendrerit euismod
velit. Ut laoreet lectus nec nisl.

The text-align-last attribute controls the alignment of the last line of a paragraph. Values
include are shown in the table below:

Value Effect
relative if text-align is "justify", align the last line against the start edge

(normally the left edge), otherwise use the setting if the text-align
attribute.

left text is aligned against the left edge of the block
right text is aligned against the right edge of the block
start text is aligned against the start edge, which for a block that is not

rotated, with the default left-to-right writing direction, is the left
edge.

end text is aligned against the end edge, which for a block that is not
rotated, with the default left-to-right writing direction, is the right
edge.

inside assuming the document is to be bound as a book, text is aligned
against the edge which is nearest the binding. For an
odd-numbered page this will be the left edge, for an even
numbered page it will be the right edge.

outside assuming the document is to be bound as a book, text is aligned
against the edge which is furtherest from the binding. For an
odd-numbered page this will be the right edge, for an even
numbered page it will be the left edge.

justify justify the last line across the whole width of page.

8.9 Left and right margins
The margins of a block are specified using the margin-left and margin-right attributes.

The margin properties indent the edge of the paragraph by the specified amount from
the edge of the containing area.

The FO for a block with a 2.5cm left margin is shown in Figure 8-11.

Figure 8-11:
Setting the left

margin

<block margin-left="2.5cm">hello world</block>

If we nest another block inside this one, as shown in Figure 8-12, the margins are
cumulative. The output from this FO is shown in Figure 8-13.

Ibex PDF Creator Developers Guide

54 Text Formatting

Figure 8-12:
Nested blocks

<block margin-left="2.5cm">
block 1
<block margin-left="2.5cm">

block 2
</block>

</block>

Figure 8-13:
Output from the

above FO

block 1
block 2

Putting background colors on the blocks shows this more clearly. The FO is in
Figure 8-14 and the output is in Figure 8-15.

Figure 8-14:
Nested blocks with

background color

<block margin-left="2.5cm" background-color="#777777">
block 1
<block margin-left="2.5cm" background-color="#999999">

block 2
</block>

</block>

Figure 8-15:
Output from above

FO

block 1
block 2

The approach to indentation defined in the XSL-FO standard is that the content of two
nested blocks which do not specify a margin have the same left edge. The edges of the
content (which in our example is the text) are aligned, and any borders and padding are
placed outside those edges. Figure 8-16 shows the FO for two nested blocks with no
margin attributes. The text will be vertically aligned and the background colors will be
placed outside the text. Figure 8-17 shows the resulting output.

Figure 8-16:
Nested blocks with no

margins specified

<block padding="1cm" background-color="#777777">
block 1
<block padding="1cm" background-color="#999999">

block 2
</block>

</block>

Figure 8-17:
Output from

nested blocks
with no
margins

block 1
block 2

In XSL-FO terms, both areas have the same start-indent and hence the same content
rectangle, and the padding on the outer block extends outside its content rectangle.
This may seem counter-intuitive to some developers used to the CSS model. You can
invoke the CSS nested areas model by specifying a margin-left value, even "0pt".

Ibex PDF Creator Developers Guide

Text Formatting 55

8.10 Spacing between letters
The amount of space between two letters is dependent on the font used. Ibex reads the
TrueType or Type 1 font file and loads the width of each character. Kerning information
which specifies adjustments to the gaps between particular pairs of characters is also
read from the font file and used in the text formatting process.

The spacing between letters can be changed using the letter-spacing attribute. Any
value specified using this attribute is added to the default spacing specified by the font.

Figure 8-18 shows the FO to increase the letter spacing of some text. The resulting text is
shown in Figure 8-19.

Figure 8-18:
Using letter-spacing

<block letter-spacing="0.2em">WELLINGTON NEW ZEALAND</block>

Figure 8-19:
Text formatted using

letter-spacing
W E L L I N G T O N N E W Z E A L A N D

It is possible to make letters closer than normal using a negative value for letter-spacing.
Example FO for this is shown in Figure 8-20 and the result in Figure 8-21.

Figure 8-20:
Moving letters closer

together

<block letter-spacing="-0.1em">WELLINGTON NEW ZEALAND</block>

Figure 8-21:
Text formatted using

negative
letter-spacing

WELLINGTON NEW ZEALAND

8.11 Spacing before and after words
Spacing before and after text is specified using the space-start and space-end attributes
on the inline element.

The space-start attribute specifies space to appear before text, space-end specifies
space to appear after the text.

Figure 8-22 shows how to specify a gap between two words. This FO produces a 3cm gap
between the words as shown in Figure 8-23 .

Figure 8-22:
Using space-start

<block>
hello <inline space-start="3cm">world</inline>

</block>

Figure 8-23:
Output using

space-start

hello world

Space between words is collapsed (i.e. merged) by default. If a word has
space-end="1.0cm" and the following word has space-start="0.5cm", the gap between

Ibex PDF Creator Developers Guide

56 Text Formatting

the two words will be the larger of the two spaces (i.e. 1.0cm), not the sum. FO showing
this is in Figure 8-24 and the output is in Figure 8-25.

Figure 8-24:
FO showing merging

of spaces

<block>
<inline space-end="1cm">hello</inline>
<inline space-start="0.5cm">world</inline>

</block>

Figure 8-25:
The resulting 1.0cm

space

hello world

8.12 Forcing a line break
You can cause a line break in normal text by inserting an empty block element.
Figure 8-26 shows an FO example which does this and Figure 8-27 shows the resulting
output.

Figure 8-26:
Forcing a line break

<block>
this will be line one <block/>this will be line two

</block>

Figure 8-27:
Line break created

with an empty block

this will be line one
this will be line two

8.13 Space at the start of a line
Space specified with the space-start attribute is normally discarded at the start of the
line. To force it to be retained use the space-start.conditionality attribute.

Figure 8-28 shows two blocks which create two lines. The first block will have no space
at the start of the word. The second block has space-start.conditionality="retain" so the
space specified by the space-start="1cm" will be retained. The output created by this FO
is shown in Figure 8-29.

Figure 8-28:
Using retain

<block background-color="#eeeeee">
<inline space-start="1cm">
discard
</inline>

</block>
<block background-color="#eeeeee">
<inline space-start="1cm" space-start.conditionality="retain">
retain
</inline>

</block>

Figure 8-29:
Output from using

retain

discard
retain

Ibex PDF Creator Developers Guide

Text Formatting 57

8.14 Vertical alignment
The vertical alignment of blocks of text within a containing flow or block is controlled by
the display-align attribute.

The vertical alignment of words on a line is controlled by the vertical-align attribute.

Text on a line is positioned relative to the baseline, which is shown in Figure 8-30.

By default text sits on the baseline. In the terms of the XSL-FO specification, this is the
alphabetic baseline.

Figure 8-30:
The baseline

baseline

ascender

1/2 leading

descender
1/2 leading

line-height40pt
The height of the font above the baseline is the ascender. The height of the font below
the baseline is the descender. Adding the ascender and descender values for the font
(not for individual characters) gives the font size. The leading is the space above and
below the characters, and is the difference between the line-height and the font-size.

The XSL-FO specification refers to the ascender value as the text-altitude and the
descender as the text-depth. Together these two values add up to the allocation
rectangle height. In these terms:

leading = (line-height - text-altitude - text-depth)

so

1/2 leading = (line-height - text-altitude - text-depth) / 2

By default the line height is 1.2em. The em unit is proportional to the size of the current
font, so as the font size increases so does the line height. This can be changed by setting
the Settings.LineHeightNormal value. For instance to make the line height larger and so
space text out more vertically you could use the code in Figure 8-31.

Figure 8-31:
Changing the default

line height

FODocument doc = new FODocument();

doc.Settings.LineHeightNormal = "1.4em";

8.14.1 The effect of subscript and superscript text on line spacing

When calculating the largest characters on this line, we really mean those whose
ascender and descender values are greatest (i.e. futherest from the baseline). When
making this calculation, the value of the line-height-shift-adjustment attribute is
considered. If text is a subscript or superscript and so has a baseline-shift value which
changes its position vertically, this will also change its effective ascender and descender
values. If line-height-shift-adjustment = "consider-shifts" (the default value) then the
baseline-shift amount is taken into account when working out the greatest ascender and
descender. If line-height-shift-adjustment = "disregard-shifts" then the effect of the
baseline-shift is ignored. Setting line-height-shift-adjustment = "disregard-shifts" makes
lines stay the same distance apart regardless of subscript and superscript elements.

Ibex PDF Creator Developers Guide

58 Text Formatting

The effect line-height-shift-adjustment is shown in Figure 8-32; the first two lines are in a
block which has line-height-shift-adjustment= "consider-shifts" and so are further apart
than the second two which are in a block which has line-height-shift-adjustment =
"disregard-shifts":

Figure 8-32:
Effect of

disregard-shifts

Specifies a string on which content of cells in a table column will
align (see the section, in the CSS2 Recommendation2).

Specifies a string on which content of cells in a table column will
align (see the section, in the CSS2 Recommendation2).

8.14.2 The baseline

The baseline is below the top of the text block a distance equal to 1/2 leading +
max(ascender), which places the baseline in the same place for all text elements. This
means that normally text rests on the same baseline regardless of the font size, as
shown in Figure 8-33.

Figure 8-33:
Text on the baseline

baseline

ascender

1/2 leading

descender
1/2 leading

line-height40pt 20pt

8.14.3 Subscript and superscript

Subscripted and superscripted text is created by using the baseline-shift attribute on an
inline element.

The effect of the baseline shift is shown in Figure 8-34, where the "pt" characters are in
an inline element with baseline-shift = "5pt".

Figure 8-34:
Effect of baseline shift

baseline

ascender

1/2 leading

descender
1/2 leading

line-height

baseline-shift40pt 30pt
The FO to move a word above the current baseline by 5 points is shown in Figure 8-35
with the resulting output appears in Figure 8-36.

Figure 8-35:
FO showing

baseline-shift

<block
hello
<inline color="red" baseline-shift="5pt">

super
</inline>

</block>

Figure 8-36:
Output from the

above FO
hello

super

Ibex PDF Creator Developers Guide

Text Formatting 59

Font files contain default baseline shift values for superscripted and subscripted text.
Rather than specifying baseline-shift="5pt", you can use the values "super" and "sub".
The FO to move a word above the current baseline by the default amount for the current
font is shown in Figure 8-37 with the resulting output in Figure 8-38. Using the "sub" and
"super" values is preferable to using specific measurements because it means (a) if you
change the font size of the paragraph you do not have to change all the baseline-shift
values and (b) you get the baseline sift the font designer intended.

Figure 8-37:
Using the default

superscript

<block
hello
<inline color="red" baseline-shift="super">

super
</inline>

</block>

Figure 8-38:
Output from the

above FO
hello super

8.15 Line stacking strategies
XSL-FO uses the line-stacking-strategy attribute to determine how lines are stacked
vertically on a page. The default value of this attribute is "max-height". When the
"max-height" strategy is used the height of a line depends on the height of the
characters or images on that line. The information which follows assumes that this
default value is used. The other values for line-stacking-strategy, namely "font-height"
and "line-height" will produce different results, since the height of the line using these
strategies does not change when the content of the line changes.

The leading value is calculated from the line-height and font-size specified for the block
element which contains the text. It is constant for the whole block and is not affected by
other values specified on contained within the block.

The height the line is calculated using "largest" characters found on the line, i.e. the sum
of the max(ascender) and max(descender) values.

8.16 Aligning images
An inline element such as external-graphic is treated similarly to a text element. The
height of the image is used as the ascender value. The descender value is zero.

This means that by default an image will be positioned on the baseline, as shown in
Figure 8-39 .

Figure 8-39:
An image on the

baseline
baseline

ascender

1/2 leading

descender
1/2 leading

line-height40pt

Ibex PDF Creator Developers Guide

60 Text Formatting

A large image will contribute a large ascender value to the baseline placement
calculation, but will still sit on that baseline as shown in Figure 8-40.

Figure 8-40:
Large image on

baseline

baseline40pt
8.16.1 The before-edge baseline

By default an element has an alignment-baseline value of "baseline" and so sits on the
baseline shown in the above diagrams. For a given line, the largest thing on that line
which has alignment-baseline = "baseline" establishes the position of the before edge
baseline. This is shown in Figure 8-41.

Figure 8-41:
Image aligned to

before-edge baseline

baseline

before edge baseline

40pt
To align another object with the before edge baseline, either set vertical-align = "top" or
alignment-baseline = "before-edge".

Figure 8-42 shows a second smaller image with default alignment, which positions it on
the baseline.

Figure 8-42:
Differently aligned

images

baseline

before edge baseline

40pt
By specifying vertical-align="top" on the external-graphic for the second image, we can
align this image to the before edge baseline and get the layout shown in Figure 8-43.

Figure 8-43:
Two images aligned

using vertical-align

baseline

before edge baseline

40pt
If all the elements on the line have vertical-align = "top", then the before edge baseline
cannot be calculated, so the text before edge baseline is used. This is the top of the
ascender for the font specified for the block which contains the elements.

Fonts 61

Chapter 9

Fonts
Ibex supports TrueType and Type 1 (Postscript) fonts. Font information is read from the
registry at runtime, no configuration of fonts is required.

Information on how to list the fonts which Ibex can use can be found in the usage
chapter on page 32.

Ibex reads the registry to see which fonts are available. Specifically the entries under
"HKLM\software\microsoft\windows nt\currentversion\fonts" list available fonts, and
those under "HKLM\software\microsoft\windows nt\currentversion\fontsubstitutes" list
translations from font names to existing fonts. Any of the font names listed in these two
places can be used.

In addition Type 1 font names are read from "HKLM\software\microsoft\windows
nt\currentversion\type 1 installer\type 1 fonts". Only Type 1 fonts that come as a PFM
(metrics) and PFB (binary) pair of files are supported.

9.1 How Ibex uses fonts
Your FO file contains a series of letters. Each of which is stored in the file as a one or two
byte code point such as 65 for 'A' or 0x8226 for the bullet character.

Ibex reads the TrueType or Type 1 font file and looks in the font to see if the font
supports that particular code point. If it does, then the font maps that code point to a
glyph, which is what gets displayed.

Not all fonts support all code points. For example arial.ttf is 370 KB in size, whereas
arialuni.ttf is 23,000 KB, because arialuni has glyphs for a many more code points that
arial.ttf.

Not all fonts map a code point to the same glyph. Some fonts map code points they do
not support to a glyph such as the square box one.

62 Fonts

Floats 63

Chapter 10

Floats
The float element can be used to position an image or other elements to the side or top
of the page and cause text to flow around that image.

The paragraph in Figure 10-1 uses two float elements to make the image appear on the
left and right sides, with the text flowing around the images below them.

Figure 10-1:
Left and right floats

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis in
dolor quis lectus cursus condimentum. Vestibulum id nunc vitae dui
semper ultrices. Mauris a mi. Phasellus eu lacus. Pellentesque eu
ligula mattis odio faucibus faucibus. Aliquam sit amet
nunc laoreet tellus ullamcorper malesuada. Vestibulum
ante ipsum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Cras nec mauris. Proin cursus
tincidunt leo. Maecenas metus lacus, imperdiet
fermentum, blandit at, sollicitudin eu, sem. Duis

elementum libero vitae lacus. Curabitur justo. Aliquam erat volutpat.
Maecenas nec nulla in massa consectetuer volutpat. Aenean turpis
nisl, rutrum a, posuere sit amet, varius in, enim. Praesent risus.
Nam volutpat enim eget neque. Maecenas a dui ac felis nonummy sollicitudin. Proin
iaculis. Vestibulum in eros sit amet libero mollis convallis. nunc laoreet tellus
ullamcorper malesuada. Vestibulum ante ipsum primis in faucibus orci luctus et
ultrices posuere cubilia Curae; Cras nec mauris. Proin cursus tincidunt leo.
Maecenas metus lacus, imperdiet fermentum, blandit at, sollicitudin eu, sem. Duis
elementum libero vitae lacus. Curabitur justo. Aliquam erat volutpat. Maecenas nec
nulla in massa consectetuer volutpat. Aenean turpis nisl, rutrum a, posuere sit
amet, varius in, enim. Praesent risus. Nam volutpat enim eget neque. Maecenas a dui
ac felis nonummy sollicitudin. Proin iaculis. Vestibulum in eros sit amet libero
mollis convallis.

Ibex PDF Creator Developers Guide

64 Floats

Figure 10-2:
FO for float example

<block font-size="1.0em" text-align="justify">
<float float="left">

<block-container inline-progression-dimension="2.5cm">
<block text-align="center">

<external-graphic src="url(ibexorange.jpg)" content-width="50%"
padding="3pt"/>

</block>
</block-container>

</float>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis in dolor quis lectus
cursus condimentum. Vestibulum id nunc vitae
dui semper ultrices. Mauris a mi. Phasellus eu lacus. Pellentesque eu ligula mattis
odio faucibus faucibus. Aliquam sit amet

<float float="right">
<block-container inline-progression-dimension="2.5cm">
<block text-align="center">

<external-graphic src="url(ibexorange.jpg)" content-width="50%"
padding="3pt"/>

</block>
</block-container>

</float>
nunc laoreet tellus ullamcorper malesuada. Vestibulum ante ipsum primis in faucibus
orci luctus et ultrices posuere cubilia Curae; Cras nec mauris. Proin cursus
tincidunt leo. Maecenas metus lacus, imperdiet fermentum, blandit at,
sollicitudin eu, sem. Duis elementum libero vitae lacus. Curabitur justo. Aliquam
erat volutpat. Maecenas nec nulla in massa consectetuer volutpat. Aenean turpis
nisl, rutrum a, posuere sit amet, varius in, enim. Praesent risus. Nam volutpat
enim eget neque. Maecenas a dui ac felis nonummy sollicitudin. Proin iaculis.
Vestibulum in eros sit amet libero mollis convallis. nunc laoreet tellus
ullamcorper malesuada. Vestibulum ante ipsum primis in faucibus orci luctus et
ultrices posuere cubilia Curae; Cras nec mauris. Proin cursus tincidunt leo.
Maecenas metus lacus,imperdiet fermentum, blandit at, sollicitudin eu, sem.
Duis elementum libero vitae lacus. Curabitur justo. Aliquam erat volutpat.
Maecenas nec nulla in massa consectetuer volutpat. Aenean turpis nisl, rutrum a,
posuere sit amet, varius in, enim. Praesent risus. Nam volutpat enim eget neque.
Maecenas a dui ac felis nonummy sollicitudin. Proin iaculis. Vestibulum in eros
sit amet libero mollis convallis.
</block>

This effect is achieved by having a block which contains the text and two float elements.
The float elements in turn contain a block-container element which has a
inline-progression-dimension attribute defining the width of the float area. Any elements
inside the block-container will be in the float area. If a block-container is not used within
the float and the width of the float cannot be determined, a default configurable value is
used.

The FO for creating the above is show in Figure 10-2. Figure 10-2 is itself contained inside
a float with float = "before", which will make it appear at the top of the following page.
This technique is used in this manual when we do not want a large example to be split
across page breaks or to interrupt the content. When a float has float = "before", its
position in the PDF file is not the same as its position in the FO file, in that it will be
moved to the top of the next page and the blocks before and after the float will flow as
if the float was not there.

The side on which the float occurs is specified using the float attribute. This can be set to
"left" or "right" to position the float at the side of the page. It can also be set to
"before" to position the float at the start of the next page.

Side floats (with float = "left" or float = "right") are closely tied to the block which
contains the float element. If the float element does not fit on the page, then the float
and some or all of the containing block will be moved to the following page. This ensures
that the text in the block does not refer to (for example) an image in the float which is
not on the same page as the text.

Ibex PDF Creator Developers Guide

Floats 65

10.1 How the float width is calculated
Ibex looks at the content of the float element to try and determine how wide the float
should be. If a block-container element is found directly below the float element, and
this block-container has a width attribute, then that determines the width of the float. If
no width can be found, then the width of the float is calculated from by multplying the
containing block width by Settings.SideFloatDefaultWidthPercentage, which defaults to
30%.

66 Floats

Space Handling 67

Chapter 11

Space Handling
XSL-FO defines various attributes for managing whitespace in FO. These allow you to
control how linefeeds and whitespace are output.

11.1 Linefeeds and carriage returns
A linefeed is a character with ASCII code 10, or Unicode code point U+000A. This is
different to a carriage return which has ASCII code 13. Ibex acts on linefeeds, not on
carriage returns. Carriage returns are ignored during PDF creation.

11.2 Default treatment of linefeeds and spaces
By default linefeeds and whitespace preceding and following linefeeds are removed
during formatting. Figure 11-1 shows FO which has linefeeds at the end of each line. The
resulting output shown in Figure 11-2 has neither linefeeds nor spaces around the text.
This is the default treatment for text in XSL-FO.

Figure 11-1:
Text with linefeeds

and spaces

<block margin='2cm'>To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
</block>

Figure 11-2:
Output with default

handling
To be, or not to be: that is the question: Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune, Or to take arms against a sea of
troubles,

11.3 Using linefeeds to break text
The linefeed-treatment attribute is used to specify the treatment of linefeeds in text.
This defaults to "ignore" causing linefeeds to be ignored. We can retain the linefeeds by
setting the linefeed-treatment attribute to "preserve". Figure 11-3 shows our example
with this attribute added. Figure 11-4 shows the output from this FO.

Ibex PDF Creator Developers Guide

68 Space Handling

Figure 11-3:
Using

linefeed-treatment

<block linefeed-treatment="preserve">To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
</block>

Figure 11-4:
Output with

linefeeds preserved
To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,

11.4 Retaining spaces
The white-space-treatment and white-space-collapse attributes are used to control the
handling of spaces.

If we want to put some formatted code in our documen, Figure 11-5 shows FO for this.

Figure 11-5:
Code example

<block linefeed-treatment="preserve">
private void swap_byte(ref byte x, ref byte y) {

byte t = x;
x = y;
y = t;

}
</block>

Setting linefeed-treatment = "preserve" we get the output show in Figure 11-6. We have
preserved the linefeeds but all formatting spaces have gone.

Figure 11-6:
Code with linefeeds

but no spacing
private void swap_byte(ref byte x, ref byte y) {
byte t = x;
x = y;
y = t;
}

The white-space-collapse attribute controls whether Ibex compresses adjacent white
space characters into a single space. By default any number of adjacent spaces are
compressed into a single space.

The white-space-treatment attribute controls whether Ibex ignores spaces adjacent to
linefeeds. Setting white-space-treatment = "preserve" makes Ibex retain white space
which appears adjacent to linefeeds.

If we set white-space-treatment to "preserve", and white-space-collapse to "false" we
will retain the white spaces around the linefeeds. The FO for this is shown in Figure 11-7,
and the formatted output is shown in Figure 11-8.

Ibex PDF Creator Developers Guide

Space Handling 69

Figure 11-7:
FO to retain spaces

and linefeeds

<block
linefeed-treatment="preserve"

white-space-treatment="preserve"
white-space-collapse="false"

>
private void swap_byte(ref byte x, ref byte y) {

byte t = x;
x = y;
y = t;

}
</block>

Figure 11-8:
Output with

linefeeds but no
spacing

private void swap_byte(ref byte x, ref byte y) {
byte t = x;
x = y;
y = t;

}

11.5 Non-breaking spaces

Unicode defines the code point U+00A0 called NO-BREAK SPACE. This can be used to
insert a space between words without allowing a line break to occur between the
words. Ibex treats two words separated by a U+00A0 as a single word.

The non-breaking space can be inserted into XML using the entity.

The example in Figure 11-9 shows a block used in a table header. It contains the three
words "Score per 100". The default formatting is shown in Figure 11-10. If we want to
move the word "per" to the next line to keep it with the "100", we replace the space
between "per" and "100" with a non-breaking space. This will prevent Ibex breaking the
line between the "per" and "100" words.

Figure 11-11 shows the FO with a non-breaking space and Figure 11-12 shows the resulting
output.

Figure 11-9:
FO without a

non-breaking space

<block-container width="2.8cm">
<block border="1pt solid black"

padding="3pt" text-align="center">
Score per 100

</block>
</block-container>

Figure 11-10:
Output without a

non-breaking space

Score per
100

Figure 11-11:
FO with

non-breaking space

<fo:block-container width="2.8cm">
<fo:block border="1pt solid black"

padding="3pt" text-align="center">
Score per 100

</fo:block>
</fo:block-container>

Figure 11-12:
Output with a

non-breaking space

Score
per 100

70 Space Handling

Colors 71

Chapter 12

Colors
XSL-FO defines various attributes for managing color. By default a block is displayed with
the foreground color (that is the text) being black and the background color being
white.

Colors are most commonly expressed using the RGB color scheme, where there are
three parts to a color: red, green and blue. Ibex also supports the CMYK color scheme
commonly used in the printing industry.

12.1 Text color

The color of text is specified using the color attribute. Figure 12-1 shows a simple
example of some FO to make text blue. The output is shown in Figure 12-2.

Figure 12-1:
FO for blue text

<block color="blue">
To be, or not to be: that is the question:

</block>

Figure 12-2:
Blue text

The resulting text will be blue like this

12.2 Background color

The background color of any element is defined using the background-color attribute.
Figure 12-3 shows FO for a block with a gray background. The output from this is shown
in Figure 12-4.

Figure 12-3:
FO for gray

background

<block background-color="gray">
To be, or not to be: that is the question:

</block>

Figure 12-4:
Gray background

The resulting text will have a gray background like this

Ibex PDF Creator Developers Guide

72 Colors

12.3 Available colors

The value used for the color and background-color attributes can be a predefined color
such as "red", an RGB color defined using a hex value such as "#eeffdd" or a CMYK color.

12.3.1 Predefined colors

XSL-FO uses the list of colors defined for HTML 4.0, which contains these values:

aqua ibex

black ibex

blue ibex

fuchsia ibex

gray ibex

green ibex

lime ibex

maroon ibex

navy ibex

olive ibex

purple ibex

red ibex

silver ibex

teal ibex

white ibex

yellow ibex

12.3.2 Hexadecimal RGB colors

A color can be defined as a string of six digits preceded by a "#" character. The first two
digits define the red component of the color, in a range from 0 to 255. The second two
digits define the green component and the last two digits define the blue component.
This is the same scheme for defining colors as is used in HTML.

12.3.3 CMYK colors

CMYK colors are four-part colors using values for cyan, magenta, yellow and black
respectively. The CMYK system is subtractive, meaning that higher values mean less
color, unlike RGB where higher values mean more color. CMYK colors are used in the
printing industry to define a color which will appear the same across all media. Typically
a color defined using RGB will not appear exactly the same on the screen and on a

Ibex PDF Creator Developers Guide

Colors 73

printed page, or even on two different computer screens. CMYK colors are used to
ensure that colors are the same on screen and on the printed page.

PDF files are usually created with single color scheme. You would not usually mix CMYK
and RGB colors in one document. Note that when creating a CMYK PDF file any images
included in the document should be in CMYK format.

A CMYK color is defined using the rgb-icc() function. This takes eight parameters. The
first three define the red, green and blue components of a fallback RGB color, the fourth
defines the color profile name, and the last four define the four parts of the CMYK color.
The color profile must have been declared in the declarations formatting object using a
color-profile element.

Figure 12-5 shows an example of the rgb-icc() function.

Figure 12-5:
The rgb-icc function

<block color="rgb-icc(0, 0, 0, cmyk, 0.7,0.3,0.3,0.4)">
in cmyk .5,.5,.5,0

</block>

In Figure 12-5 the three components of the fallback RGB color are zero. This is normal
because we are creating a CMYK PDF file and will not be using any fallback RGB colors.
The color profile name is "cmyk". Ibex requires that the color profile name be "cmyk"
when creating a CMYK color.

A complete document using the CMYK color space is shown in Figure 12-6. This shows
how to use the declarations and color-profile elements to define a color profile.

Figure 12-6:
FO for a CMYK PDF

file

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="http://www.w3.org/1999/XSL/Format">
<layout-master-set>
<simple-page-master master-name="page">
<region-body margin="1in"

region-name="body"/>
</simple-page-master>
</layout-master-set>

<declarations>
<color-profile src="src"

color-profile-name="cmyk"/>
</declarations>

<page-sequence master-reference="page">
<flow flow-name="body">
<block color="rgb-icc(0, 0, 0, cmyk, 0.7,0.3,0.3,0.4)">
in cmyk .5,.5,.5,0
</block>
</flow>
</page-sequence>

</root>

12.3.4 PDF/X color profiles

Ibex can create PDF files which conform to the PDF/X standard. These files can include
embedded color profiles, used to define a common color scheme across different
devices.

Color profiles are loaded from files on disk and included in the PDF file. Some color
profiles are very large (i.e. > 500k) and can result in large PDF files.

Ibex PDF Creator Developers Guide

74 Colors

Loading a color profile from a file on disk is an Ibex extension. The name of the color
profile file is specified using the color-profile-file-name attribute of the ibex:pdfx
element, as shown in Figure 12-7 below.

Figure 12-7:
FO for a PDF/X

showing the loading
of a color profile

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="http://www.w3.org/1999/XSL/Format"
xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format">
<layout-master-set>
<simple-page-master master-name="page" page-width="20cm">
<region-body region-name="body" margin="3cm" reference-orientation='0'/>

</simple-page-master>
</layout-master-set>

<ibex:pdfx color-profile-file-name="colorprofiles\USWebCoatedSWOP.icc"
output-condition="TR001 SWOP/CGATS"/>

<page-sequence master-reference="page">
<flow flow-name="body">

<block font="10pt arial">
hello world

</block>
</flow>

</page-sequence>
</root>

Lists 75

Chapter 13

Lists
Lists are created using the list-block element. A list-block in XSL-FO is an area of content
divided into two columns.

A simple list-block is shown in Figure 13-1. The list created by this FO is shown in
Figure 13-2.

Figure 13-1:
FO for a list

<list-block provisional-distance-between-starts=".5cm"
provisional-label-separation="0.1cm">

<list-item>
<list-item-label end-indent="label-end()">

<block font='8pt arial'>●</block>
</list-item-label>
<list-item-body start-indent="body-start()">

<block>
item one

</block>
</list-item-body>

</list-item>
<list-item>

<list-item-label end-indent="label-end()">
<block font='8pt arial'>●</block>

</list-item-label>
<list-item-body start-indent="body-start()">

<block>
item two

</block>
</list-item-body>

</list-item>
</list-block>

Figure 13-2:
A list

● item one

● item two

Features of lists include:

• the list-block is a block-level element which contains the whole list.

• the provisional-distance-between-starts attribute on the list-block defines the
distance between the start of the label and the start of the body.

• the provisional-label-separation attribute on the list-block defines the size of the gap
between the end of the label and the start of the body. This gap is created by
reducing the size of the label. For example, if provisional-distance-between-starts is
5cm and the provisional-label-separation is 1cm, then the start edges of the label and
body will be 5cm apart, and the label will be 4cm (5cm - 1cm) wide.

Ibex PDF Creator Developers Guide

76 Lists

• each item in the list is contained in a list-item element.

• each list-item must contain both a list-item-label and a list-item-body. The
list-item-label must come first.

• the list-item-label should have the end-indent attribute set to "label-end()". This is a
special function which returns a value derived from provisional-distance-between-
starts and provisional-label-separation.

• the list-item-body should have the start-indent attribute set to "body-start()". This is a
special function which returns a value derived from provisional-distance-between-
starts and provisional-label-separation.

• both the list-item-label and list-item-body contain one or more block-level elements,
so a list-item-label or list-item-body can contain other block-level elements such as
block, table and list-block.

13.1 Bulleted lists
The example in Figure 13-1 also shows how to insert a Unicode character into the FO,
using the syntax ●.

This table shows some common bullet types for lists:

Unicode Result

• •

‣ ‣

● ●

○ ○

■ ■

□ □

◆ ◆

◇ ◇

Ibex PDF Creator Developers Guide

Lists 77

Note that what is displayed in the document depends on whether the font you are using
contains the specified character. If the font does not contain the specified character you
will see a warning message like the one in Figure 13-3.

Figure 13-3:
Error message if

bullet not in font

warning:380 No glyph index found for code point 2023 in font ArialMT

78 Lists

Tables 79

Chapter 14

Tables
A table in XSL-FO is an area of content divided into rows and columns. A table is created
with the table element.

A FO for a simple table is shown in Figure 14-1 and the output it creates is shown in
Figure 14-2. This shows the basic structure of a table element containing table-body,
table-row and table-cell elements.

Figure 14-1:
FO for a simple 2 x 2

table

<table>
<table-body>

<table-row>
<table-cell border="1pt solid blue" padding="2pt">

<block>row 1 column 1</block>
</table-cell>
<table-cell border="1pt solid blue" padding="2pt">

<block>row 1 column 2</block>
</table-cell>

</table-row>
<table-row>

<table-cell border="1pt solid blue" padding="2pt">
<block>row 2 column 1</block>

</table-cell>
<table-cell border="1pt solid blue" padding="2pt">

<block>row 2 column 2</block>
</table-cell>

</table-row>
</table-body>

Figure 14-2:
The simple 2 x 2 table row 1 column 1 row 1 column 2

row 2 column 1 row 2 column 2

The padding and border attributes are not inherited from containing elements, so are
best defined on the table-cell elements.

14.1 Cell padding
Padding is the amount of space that appears between the inside edge of the border of a
cell and the outside edge of the content of the cell. Padding is specified by the padding
attribute. The default amount of padding is '0pt'. Figure 14-3 shows a table with two
cells. The first cell has padding="1pt" and the second has padding="5pt". Padding is
almost always used to avoid having the content too close to the cell borders.

Ibex PDF Creator Developers Guide

80 Tables

Figure 14-3:
FO showing cells

with different
padding

this cell has padding set to '1pt' so
the text is close to the edges of the
cell

this cell has padding set to '5pt' so the
text is not so close to the edges of the
cell

The padding attribute sets padding for all four sides of the cell. Individual sides can be
set using the padding-left, padding-right, padding-top and padding-bottom attributes.

The padding attribute also supports a shorthand format where:

• if one value is specified (padding="2pt") the same value will apply to all four sides;

• if two values are specified (padding="2pt 3pt") the first value will apply to the top
and bottom edges, the second value to the left and right edges;

• if three values are specified (padding="2pt 3pt 1pt") the first value will apply to the
top edge, the second to the left and right edges, and the third to bottom edge;

• if four values are specified (padding="2pt 3pt 1pt 0pt") these will apply to top,
right, bottom and left edges in that order.

14.2 Cell background color
The background color of a cell is specified using the background-color attribute. This
supports the same predefined colors as CSS and the use of hex values such as "#33ffcc".
The background color of the cell extends to the inside edge of the border, which means
that the area specified by the padding attribute is colored by the background color. This
is shown in Figure 14-4 where the second cell has the attribute background-color =
"#dddddd".

Figure 14-4:
Cell with background

color set
this cell has padding set
to '1pt' so the text is
close to the edges of the
cell

this cell has padding set to '5pt' so the
text is not so close to the edges of the
cell. The background color covers the
padding.

If you do not want the background to extend to the edge of the padding, specify the
background-color attribute on the contents of the cell (i.e. the block elements) rather
than on the table-cell. An example FO for this is shown in Figure 14-5 and the resulting
output appears in Figure 14-6.

Ibex PDF Creator Developers Guide

Tables 81

Figure 14-5:
FO setting the

background color on
a block

<table>
<table-body>

<table-row>
<table-cell border='1pt solid blue' padding='1pt'>

<block>
this cell has padding set to '1pt' so the text is close to the edges of

the cell
</block>

</table-cell>
<table-cell border='1pt solid blue' padding='5pt'

background-color='#dddddd'>
<block background-color='#dddddd'>
this cell has padding set to '5pt' so the text is not so close to the

edges of the cell
</block>

</table-cell>
</table-row>

</table-body>

Figure 14-6:
Cell with background

color on the block
element

this cell has padding set to
'1pt' so the text is close to
the edges of the cell

this cell has padding set to '5pt'
so the text is not so close to the
edges of the cell

14.3 Cell background images
An image can be used as the background to a cell by specifying the background-image
element, as shown in Figure 14-7. This produces the output shown in Figure 14-8.

Figure 14-7:
FO for using an image

as a cell background

<table>
<table-body>

<table-row>
<table-cell border='1pt solid blue' padding='1pt'>

<block>
this cell has padding set to '1pt' so the text is close to the edges of

the cell
</block>

</table-cell>
<table-cell border='1pt solid blue' padding='5pt'

background-image='url(ibex.jpg)'>
<block>
this cell has a background image
</block>

</table-cell>
</table-row>

</table-body>

Figure 14-8:
Cell with image

background
this cell has padding set to '1pt' so the
text is close to the edges of the cell

this cell has a background
image

As the above example shows, by default the image will be repeated if it is less than the
width of the cell. This can be changed using the background-repeat attribute. If this is
set to "no-repeat" the output changes to that shown in Figure 14-9.

Figure 14-9:
Using

background-repeat =
'no-repeat'

this cell has padding set to '1pt' so the
text is close to the edges of the cell

this cell has a background
image

Ibex PDF Creator Developers Guide

82 Tables

The background image can be positioned in the cell using the
background-position-horizontal and background-position-vertical attributes. The cell in
Figure 14-10 example has background-position-horizontal set to "50%".

Figure 14-10:
Centering the

background image
this cell has padding set to "1pt: so the
text is close to the edges of the cell

this cell has a background
image

14.4 Implicit and explicit rows
Usually FO files use the table-row element to define which cells are in which rows, as
shown in Figure 14-11.

Figure 14-11:
Tables with cells

contained in rows

<table>
<table-body>

<table-row>
<table-cell border="1pt solid blue" padding="2pt">

<block>row 1 column 1</block>
</table-cell>
<table-cell border="1pt solid blue" padding="2pt">

<block>row 1 column 2</block>
</table-cell>

</table-row>
<table-row>

<table-cell border="1pt solid blue" padding="2pt">
<block>row 2 column 1</block>

</table-cell>
<table-cell border="1pt solid blue" padding="2pt">

<block>row 2 column 2</block>
</table-cell>

</table-row>
</table-body>

It is possible to dispense with the table-row element and have the table-body contain
table-cell elements directly. In this case any cell can have the ends-row attribute set to
"true", which causes a new row to be started containing the next cell. This approach is
sometimes easier to use when generating the FO using XSLT.

Figure 14-12 shows what the above FO would look like if we changed it to use implicit
rows. The output from this appears in Figure 14-13 below.

Figure 14-12:
FO for a table with

implicit rows

<table>
<table-body>

<table-cell border='1pt solid blue' padding='2pt'>
<block>row 1 column 1</block>

</table-cell>
<table-cell border='1pt solid blue' padding='2pt'

ends-row='true'>
<block>row 1 column 2</block>

</table-cell>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 2 column 1</block>
</table-cell>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 2 column 2</block>
</table-cell>

</table-body>

Ibex PDF Creator Developers Guide

Tables 83

Figure 14-13:
Table with implicit

rows

row 1 column 1 row 1 column 2

row 2 column 1 row 2 column 2

14.5 Table columns
The table-column element is used to set the column width and other characteristics of a
table column. A table-column element has an associated column number which
determines which column the table-column element refers to. This column number is
either implied (with the first table-column element applying to the first column, the
second to the next etc.), or explicitly set using the column-number attribute.

A single table-column element can be used to define the style of multiple columns by
using the number-columns-spanned attribute.

Figure 14-14 shows the FO for a table with two table-column elements, which apply to
the first and second columns. In this case they set the column widths (to 30% and 70%),
and the give the second column a shaded background. The output created from the FO
appears in Figure 14-15.

Figure 14-14:
FO using table-column

elements

<table>
<table-column column-width='30%'/>
<table-column column-width='70%'

background-color='#dddddd'/>
<table-body>

<table-row>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 1 column 1</block>
</table-cell>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 1 column 2</block>
</table-cell>

</table-row>
<table-row>

<table-cell border='1pt solid blue' padding='2pt'>
<block>row 2 column 1</block>

</table-cell>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 2 column 2</block>
</table-cell>

</table-row>
</table-body>

Figure 14-15:
Table with defined

column widths

row 1 column 1 row 1 column 2

row 2 column 1 row 2 column 2

Some cell attributes such as background color are determined using attributes from the
cell itself and from the other elements of the table structure. The order of precedence in
determining cell characteristics such as background-color is table-cell, table-row,
table-body, table-column and finally table.

14.6 Proportional column widths
Columns can be allocated widths which are proportional to the widths of other columns.
For example, if we have two columns and want to give the first column twice the width

Ibex PDF Creator Developers Guide

84 Tables

of the second, we can specify column widths using the proportional-column-width()
function as shown in Figure 14-16. The total of the values used in the
proportional-column-width() functions is 3 (2+1), so the first column will gave 2/3 of the
width and the second 1/3. The output from this FO appears in Figure 14-17.

Figure 14-16:
FO using proportional

column widths

<table>
<table-column

column-width='proportional-column-width(2)'/>
<table-column

column-width='proportional-column-width(1)'
background-color='#dddddd'/>

<table-body>
<table-row>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 1 column 1</block>
</table-cell>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 1 column 2</block>
</table-cell>

</table-row>
<table-row>

<table-cell border='1pt solid blue' padding='2pt'>
<block>row 2 column 1</block>

</table-cell>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 2 column 2</block>
</table-cell>

</table-row>
</table-body>

Figure 14-17:
Output from

proportional width
example

row 1 column 1 row 1 column 2

row 2 column 1 row 2 column 2

14.7 Spanning columns and rows
The number of columns which a cell spans is set by the number-columns-spanned
attribute. An example FO for this is shown in Figure 14-18. In this example the first cell of
the first row spans two columns. The output from this FO appears in Figure 14-19.

Figure 14-18:
FO for cell spanning 2

columns

<table>
<table-column column-width="30%"/>
<table-column column-width="70%"

background-color="#dddddd"/>
<table-body>

<table-row>
<table-cell border="1pt solid blue" padding="2pt"

number-columns-spanned="2">
<block>row 1 column 1</block>

</table-cell>
</table-row>
<table-row>

<table-cell border="1pt solid blue" padding="2pt">
<block>row 2 column 1</block>

</table-cell>
<table-cell border="1pt solid blue" padding="2pt">

<block>row 2 column 2</block>
</table-cell>

</table-row>
</table-body>

Ibex PDF Creator Developers Guide

Tables 85

Figure 14-19:
Cell spanning two

columns

row 1 column 1

row 2 column 1 row 2 column 2

The number of rows which a cell spans is set by the number-rows-spanned attribute.
Example FO for this is shown in Figure 14-20. In this example the first cell of the first row
spans two rows. The output from this FO appears in Figure 14-21.

Figure 14-20:
FO for cell spanning

two rows

<table>
<table-column column-width='30%'/>
<table-column column-width='70%'

background-color='#dddddd'/>
<table-body>
<table-row>
<table-cell border='1pt solid blue' padding='2pt'

number-rows-spanned='2'>
<block>row 1 column 1</block>

</table-cell>
<table-cell border='1pt solid blue' padding='2pt'>

<block>row 1 column 2</block>
</table-cell>

</table-row>
<table-row>

<table-cell border='1pt solid blue' padding='2pt'>
<block>row 2 column 2</block>

</table-cell>
</table-row>

</table-body>

Figure 14-21:
Output for cell

spanning two rows

row 1 column 1 row 1 column 2

row 2 column 2

14.8 Cell separation
XSL-FO has two ways of processing the borders of adjacent cells depending on the value
of the border-collapse attribute on the table.

If border-collapse="collapse", which is the default, there is no gap between cells and the
borders of adjacent cells are merged (or "collapsed") to get a single border shared by
both cells. The rules for combining borders are explained in the XSL-FO specification.
Broadly speaking the widest border will be used. This is called the collapsed border
model.

If border-collapse="separate" adjacent borders are not merged. A gap can be inserted
between adjacent borders using the border-spacing attribute. The border-spacing
attribute can have one or two values. If one value is specified (for instance
border-spacing="1mm") the vertical and horizontal spacing between cells is set to this
value. If two values are specified separated by a space (for instance
border-spacing='1mm 3mm') the horizontal separation is set to the first value and the
vertical separation is set to the second. This is called the separated border model.

The following examples use a table with one row containing two cells. The first cell has a
bottom border, the second does not. The table also has a bottom border.

In the separate border model the border from the first cell will be drawn before the
border of the table as shown in Figure 14-22.

Ibex PDF Creator Developers Guide

86 Tables

Figure 14-22:
Cells with separate

borders

this cell has
a bottom
border

this cell does
not have a bottom
border

In the collapsed border model the border from the first cell will be merged with the
border of the table and a single border will be drawn as shown in Figure 14-23.

Figure 14-23:
Cell border collapsed

with table border

this cell has
a bottom
border

this cell does
not have a bottom
border

If we add an inner border to each cell we can see this with the separate model, as shown
in Figure 14-24.

Figure 14-24:
Separate cell and

table borders

this cell has
a bottom
border

this cell does
not have a
bottom border

With the collapsed border model the border between the two cells will be half the width
it is in the separate model, as shown in Figure 14-25.

Figure 14-25:
Collapsed borders

this cell has
a bottom
border

this cell does
not have a bottom
border

Figure 14-26 shows an example of a table with separate borders. Note how the
border-spacing on the previous table sets the space between cells only, not the space
between the cell and the table border. This space can be set using padding. If we add
padding="2mm" to the table we get the layout shown in Figure 14-27.

Figure 14-26:
Table with separate

borders

cell one cell two

cell three cell four

Figure 14-27:
Cells separated from
the table borders by

padding
cell one cell two

cell three cell four

14.9 Table headers
Table headers are created using the table-header element. The table-header should
appear inside the table element after any table-column elements and before any
table-body elements. The table-header element is similar in structure to a table-body
element in that it contains table-row elements.

Ibex PDF Creator Developers Guide

Tables 87

This section describes the behavior of table headers which do not change. Headers
which can have different content on different pages are described later in this chapter in
the section on continuation markers on page 89.

Figure 14-28 shows the FO for a simple table with a one row header and two content
rows. The output created by the FO appears in Figure 14-29.

Figure 14-28:
Simple table with

header

<table>
<table-column column-width="100%"/>
<table-header>
<table-row>

<table-cell border="1pt solid black" padding="5pt">
<block>Heading</block>

</table-cell>
</table-row>
</table-header>
<table-body>
<table-row>

<table-cell border="1pt solid black" padding="5pt">
<block>row 1</block>

</table-cell>
</table-row>
<table-row border="1pt solid black" padding="5pt">

<table-cell>
<block>row 2</block>

</table-cell>
</table-row>
</table-body>

</table>

Figure 14-29:
Table with simple

header

Heading

row 1

row 2

Table headers are repeated at the top of the table after each page break. This is the
default. To prevent the table header appearing on pages after the first, specify
table-omit-header-at-break = "true" on the table element.

14.10 Table footers
Table footers are created using the table-footer element. The table-footer should appear
inside the table element after any table-column and table-header elements and before
any table-body elements. The table-footer element is similar in structure to a table-body
element in that it contains table-row elements.

It is a common error to place the table-footer element at the end of the table, after the
table-body elements. It must be placed before the table-body elements because Ibex
may start rendering the table to PDF before the whole table has been read from the FO
file.

This section describes the behavior of table footers which do not change. Footers which
can have different content on different pages are described later in this chapter in the
section on continuation markers on page 89.

Ibex PDF Creator Developers Guide

88 Tables

Figure 14-30 shows the FO for a simple table with a one row header and footer and two
content rows. The output created by the FO appears in Figure 14-31.

Figure 14-30:
FO for simple table

with header and
footer

<table>
<table-column column-width="100%"/>
<table-header>
<table-row>

<table-cell border="1pt solid black" padding="5pt">
<block>Heading</block>

</table-cell>
</table-row>
</table-header>
<table-footer>
<table-row>

<table-cell border="1pt solid black" padding="5pt">
<block>Footer</block>

</table-cell>
</table-row>
</table-footer>
<table-body>
<table-row>

<table-cell border="1pt solid black" padding="5pt">
<block>row 1</block>

</table-cell>
</table-row>
<table-row border="1pt solid black" padding="5pt">

<table-cell>
<block>row 2</block>

</table-cell>
</table-row>
</table-body>

</table>

Figure 14-31:
Table with simple

header and footer

Heading

row 1

row 2

Footer

Table footers are repeated at the bottom of the table before each page break. This is the
default. To prevent the table footer appearing on pages other than the last, specify
table-omit-footer-at-break = "true" on the table element.

14.11 Behavior at page breaks

14.11.1 Repeating headers

Table headers are repeated at the top of the table after each page break. This is the
default. To prevent the table header appearing on pages after the first, specify
table-omit-header-at-break = "true" on the table element.

Ibex PDF Creator Developers Guide

Tables 89

14.11.2 Repeating footers

Table footers are repeated at the bottom of the table before each page break. This is the
default. To prevent the table footer appearing on pages other than the last, specify
table-omit-footer-at-break = "true" on the table element.

14.11.3 Repeating table borders

Table borders by default do not repeat at a break in the table, so the top border of a
table is rendered only on the first page the table is on and the bottom border is
rendered only on the last page.

To make the table bottom border repeat at each page break it is necessary to specify
border-after-width.conditionality = "retain" on the table element.

To make the table top border repeat at each page break it is necessary to specify
border-before-width.conditionality = "retain" on the table element.

14.12 Table continuation markers
Table continuation markers provide a way of dynamically changing the header and
footer on a table so that different content can be displayed on different pages. A typical
use of this feature is to put the words "continued on next page" in the footer of a table
on all pages except the last.

Here we examine how the "continued on next page" requirement can be satisfied using
Ibex. The approach taken by XSL-FO has two parts, implemented using the marker and
retrieve-table-marker elements. First a retrieve-table-marker element is added to the
footer. When the PDF is created this element will be replaced by the contents of one of
the marker elements which has the same class name. The marker element which
appears in the footer depends on the values of the attributes on the
retrieve-table-marker.

The footer for this example is shown in Figure 14-32. As the PDF file is created the
contents of the marker element with marker-class-name = "continued" will be located
and inserted into the table-footer element. The content of the marker element must be
valid FO elements for their location in the table-footer. In this example the retrieved
elements go directly under the table-footer element, so the elements retrieved must be
table-row elements.

Figure 14-32:
FO for

retrieve-table-marker

<table-footer>
<retrieve-table-marker

retrieve-class-name="continued"
retrieve-position-within-table="first-starting"
retrieve-boundary-within-table="page"/>

</table-footer>

Typically, there will be more than one marker element which has the marker-class-name
= "continued". If this is not the case then the footer content will never change. The
retrieve-position attribute specifies which marker to retrieve. In this example we want
the first marker which appears on the page, so we use retrieve-position =

Ibex PDF Creator Developers Guide

90 Tables

"first-starting-within-page". We also specify retrieve-boundary = "table" so any marker
from any part of the table which has been output to PDF can be retrieved. Other options
are detailed later in this section.

Conceptually, Ibex looks at every row in the table which has been output to the PDF file
(including rows on the current page), collects all the markers associated with each of
those rows and selects one to go into the footer. Markers associated with rows which
are not on either the current page or prior pages are not considered. It is possible to
have a different marker associated with every row in the table. This is useful for
situations such as like rendering a running total.

The second part of the process is to define one or more marker elements. In this case
our marker elements are associated with table-row elements. The first table-row has a
marker element which specifies the "continued on next page" text. The contents of this
marker will be retrieved for all pages except the last.

The last row of the table has an empty marker element. The content of this (that is to
say no rows) will be what appears in the footer on the last page of the table. The marker
from the first row is shown in Figure 14-33 and the marker from the last row is shown in
Figure 14-34.

Figure 14-33:
FO for marker in the

first table row

<table-row>
<marker marker-class-name="continued">
<table-row>
<table-cell>
<block>continued on next page/<block>

</table-cell>
</table-row>
</marker>

<table-cell>
<block>row 1 cell 1 /<block>
</table-cell>

</table-row>

Figure 14-34:
FO for marker in the

last table row

<table-row>
<marker marker-class-name="continued"/>
<table-cell>
<block>row (last) cell 1 /<block>
</table-cell>

<table-row>

14.13 Aligning columns at the decimal point
Ibex can align the contents of cells in a column on the decimal point by specifying
text-align="." on each fo:table-cell in the column. This can be done explicity on each
fo:table-cell, or to make things easier to maintain it can be done by specifying
text-align="." on the fo:table-column and text-align="from-table-column" on each
fo:table-cell.

Example FO for aligning columns is shown in Figure 14-35 and the resulting output is
shown in Figure 14-36.

Ibex PDF Creator Developers Guide

Tables 91

Figure 14-35:
FO for decimal point

alignment

<table font="10pt arial">
<table-column column-width="50%" />
<table-column column-width="50%" text-align="."/>
<table-body>

<table-row>
<table-cell border="1pt solid black" padding="3pt" >

<block>ibexdls</block>
</table-cell>
<table-cell border="1pt solid black" padding="3pt"

text-align="from-table-column()">
<block>499.02</block>

</table-cell>
</table-row>
<table-row>
<table-cell border="1pt solid black" padding="3pt" >

<block>Total</block>
</table-cell>
<table-cell border="1pt solid black" padding="3pt"

text-align="from-table-column()" font-size="18pt">
<block>499.00</block>

</table-cell>
</table-row>

</table-body>
</table>

Figure 14-36:
Output for decimal

point alignment

ibexdls 499.02

Total 499.00

92 Tables

Images 93

Chapter 15

Images
Images are added to the document using either the external-graphic or
instream-foreign-object elements. The external-graphic element is used to include a file
in JPEG, GIF, TIFF, BMP, SVG or PNG formats. The instream-foreign-object element is
used to include an image defined in Scalable Vector Graphics (SVG) format where the
image SVG is contained within the FO.

The properties used to format the external-graphic and instream-foreign-object
elements are the same.

The size of the image is distinct from the size of the area in which the image is placed.

The height and width attributes on the external-graphic or instream-foreign-object
element specify the size of the area into which the graphic will be placed. If these
properties are not specified they default to an area large enough to contain the image.

The content-width and content-height attributes control the size of the image. These
can be values such as "3cm" or percentages such as "120%". If content-width and
content-height not specified the image defaults to the size in pixels specified in the
image file itself. This means that if you do not specify any of the above attributes the
image will be as large as specified in the image file, and will be placed in an area the
same size.

The dots per inch (dpi) value of the image makes a difference to the image size. Two
images can have the same dimensions in pixels but appear different sizes in the PDF
file. This is because Ibex uses the dpi value to work out the size of the image. An image
which is 300 pixels wide and stored at 300 dpi will be 1 inch wide. The same image
stored at 100 dpi will be 3 inches wide.

An image is an inline element, so for formatting purposes it can be placed in a sentence
surrounded by text and is treated as a single word.

15.1 Image basics
The external-graphic element is used to include an image which is in a file external to the
FO file. The name of the file to be included is specified using the src attribute.

Ibex PDF Creator Developers Guide

94 Images

The src attribute is called a uri-specification and must follow the following rules:

A sequence of characters that is "url(", followed by optional white space,
followed by an optional single quote (') or double quote (") character,
followed by a URI reference as defined in [RFC2396], followed by an
optional single quote (') or double quote (") character, followed by optional
white space, followed by ")". The two quote characters must be the same
and must both be present or absent. If the URI reference contains a single
quote, the two quote characters must be present and be double quotes.

This means the following are all valid values for the src attribute:

uri(ibex.jpg)

uri("ibex.jpg")

uri('ibex.jpg')

url(http://www.xmlpdf.com/images/download2.gif)

As the src attribute is a URL, an image which exists on a web server can be downloaded
automatically by Ibex as the PDF file is created. This is common in real estate and catalog
applications and means you do not need to make a copy of an existing image just to get
it into the PDF file. The FO shown in Figure 15-1 will fetch the file download2.gif from
www.xmlpdf.com. The resulting image is shown in Figure 15-2.

Figure 15-1:
FO to insert an

image from a web
server

<block space-before="6pt">
<external-graphic border="1pt solid black"

src="url(http://www.xmlpdf.com/images/download2.gif)"
content-width="200%" content-height="200%"/>

</block>

Figure 15-2:
Image included from

web server

The external-graphic element can be used to include image files in PNG, JPEG, TIFF, BMP
and GIF formats. It can also be used to include SVG images held in external files.

The inline-foreign-object is used for loading images from SVG content that is contained
inline in the FO. See SVG Images on page 105.

15.2 Making an image fit a specified space
To make an image fit a specified size use the height and width attributes to specify the
size of the external-graphic element, and then use the content-width and content-height
to fit the image to that size.

For example to fit an image into an area 2cm x 2cm, set the width and height attributes
to "2cm" and set the content-width and content-height attributes to "scale-to-fit", as
shown in Figure 15-3.

Ibex PDF Creator Developers Guide

Images 95

Figure 15-3:
Scaling an image

<fo:external-graphic src="url(image.jpg)"
height="2in" width="2in"
content-height="scale-to-fit"
content-width="scale-to-fit"/>

If you only want the image reduced in size to fit the specified area and do not want it
increased in size if it is smaller, specify content-width="scale-down-to-fit". This also
applies to content-height.

If you only want the image enlarged to fit the specified area and do not want it reduced
in size if it is larger, specify content-width="scale-up-to-fit". This also applies to
content-height.

15.3 Clipping
If the image is larger than the area in which it is contained then the image may be
clipped. Figure 15-4 shows an image at its natural size, based on the pixels and dpi values
read from the image file. If we specify the height of the external-graphic element as
2.5cm and specify overflow="hidden", the image will be clipped to this height, as shown
in Figure 15-5.

Figure 15-4:
Image at natural size

Figure 15-5:
Clipped image

Ibex PDF Creator Developers Guide

96 Images

If we specify the height of the external-graphic
element as 2.5cm and do not specify
overflow="hidden", the image will not be
clipped to this height, and will overwrite other
content as shown to the right. Because the
image is positioned on the same baseline as text,
the overflow will be at the top of the area
containing the image.

15.4 Image size and alignment
If an image is smaller than the containing area we can control where it appears in that
area using the display-align and text-align attributes. The display-align attribute controls
the vertical alignment, text-align controls the horizontal alignment. By default the image
appears in the top left corner of the inline area created by the external-graphic or
instream-foreign-object element, as shown in Figure 15-6.

Figure 15-6:
Default alignment of

an image

If we specify text-align="center" the image will move to the horizontal center of the
inline area, as shown in Figure 15-7.

Figure 15-7:
Using text-align =

'center'

Ibex PDF Creator Developers Guide

Images 97

If we specify text-align="right" the image will move to the right of the inline area as
shown in Figure 15-8.

Figure 15-8:
Right aligned image

If we specify text-align="center" and display-align="center" the image will move to the
horizontal and vertical center of the inline area, as shown in Figure 15-9.

Figure 15-9:
Vertically and

horizontally
centered image

15.4.1 Leading

Looking at the image in Figure 15-10 you can see a gap between the top of the image and
the border. This is the leading, which appears because the image is treated as a text
element and sits on the baseline. The amount of leading is derived from the font size, so
you can reduce it to zero by setting the font size to zero, by specifying font-size="0pt"
on the containing block element. This has been done in Figure 15-11.

Figure 15-10:
Image with leading

above it

Ibex PDF Creator Developers Guide

98 Images

Figure 15-11:
Using with leading

removed

15.5 Image resolution
The resolution of an image in dots per inch (dpi) can be set using the dpi attribute on the
external-graphic element. Setting this attribute overrides the dpi value read from the
image file.

Setting the dpi to a lower value than the one specified in the image will result in smaller
image of lower quality than the original. This is often done to reduce the size of the
image in the PDF file and can result in massive decreases in PDF file size. If you have an
image which is stored at 2400 dpi, and your end user will display it on a 96 dpi screen or
print it on 600 dpi printer, reducing the image dpi to 600 will not effect the appearance
of the image.

Setting the dpi to a value higher than the value read from the image file has no effect.

If for example if we wanted to store an image in the PDF file at 1200 dpi, we would use
the FO shown in Figure 15-12.

Figure 15-12:
FO to set image dpi

<block space-before="6pt">
<external-graphic border="1pt solid black"

src="url(http://www.xmlpdf.com/images/download2.gif)"
content-width="200%" content-height="200%"
dpi="1200"/>

</block>

The dpi attribute is an Ibex extension. It is not part of the XSL-FO standard.

15.6 Image anti-aliasing
Images are anti-aliased by default. This can be disabled using the ibex:anti-alias attribute
as shown in figure Figure 15-13.

Figure 15-13:
FO to disable

anti-aliasing

<block space-before="6pt">
<external-graphic

src="url(http://www.xmlpdf.com/images/download2.gif)"
ibex:anti-alias="false"
dpi="1200"/>

</block>

Figure 15-14 shows two images, the left right one has anti-aliasing disabled so the edges
of the image appear more clearly.

Ibex PDF Creator Developers Guide

Images 99

Figure 15-14:
Images with and

without anti-aliasing

The ibex:anti-alias attribute is an Ibex extension. It is not part of the XSL-FO standard.

15.7 Loading an image from memory
Ibex has the facility to load an image which is stored in memory. This permits an
application to dynamically generate an image or to load an image from a database for
inclusion in the PDF file.

The image must be passed to Ibex in a byte array or a Stream (from the System.IO
namespace).

The image must be given a unique identifier by which it can be retrieved during the PDF
creation process. This is done using the addNamedImage() method on the FODocument
object. This method takes two parameters; (1) a string which identifies the image and (2)
the stream or array which contains the image itself.

For example if we had an image in a byte array called "image" and we wanted to give it
the identifier "1029" we would use the code shown in Figure 15-15 to do this.

Figure 15-15:
C# code to load an

image from memory

byte[] image = ... dynamically create

FODocument document = new FODocument();

document.addNamedImage("1029", image);

This must be done before calling generate() to create the PDF file.

Within the FO file the image is retrieved from memory using the syntax shown in
Figure 15-16

Figure 15-16:
FO to load an image

from memory

<external-graphic src="url(data:application/ibex-image,1029)"/>

The value of the src attribute must be the string "url(data:application/ibex-image,"
followed by the unique identifier which was passed to addNamedImage().

This syntax for the url attribute conforms to RFC 2397 - The "data" URL scheme (which
can be found at http://www.faqs.org/rfcs/rfc2397.html).

http://www.faqs.org/rfcs/rfc2397.html

Ibex PDF Creator Developers Guide

100 Images

15.8 Transparent Images

15.8.1 Transparent GIF images

GIF images which have transparent areas are supported. The FO in Figure 15-17 places
the same transparent GIF image on two different backgrounds. The output from this FO
is shown in Figure 15-18.

Figure 15-17:
FO for transparent

image

<block background-color="blue">
<external-graphic src="url(ibm-logo.gif)" content-height="2cm"/>

</block>
<block background-color="black">

<external-graphic src="url(ibm-logo.gif)" content-height="2cm"/>
</block>

Figure 15-18:
Transparent GIF

images

15.8.2 Transparent PNG images

PNG images which have transparent areas are supported. The FO in Figure 15-19 places a
transparent PNG image on a white backgrounds. The output from this FO is shown in
Figure 15-20.

Figure 15-19:
FO for transparent

image

<block background-color="white">
<external-graphic src="url(RedbrushAlpha-0.25.png)" content-height="2cm"/>

</block>

Figure 15-20:
Transparent PNG

image

15.8.3 Transparent images using masking

Ibex can use image masking to make some parts of an image appear transparent. This is
an extension to the XSL-FO standard.

Image masking works by defining colors from the image which should not be displayed.
The PDF viewer will compare each pixel in the image with the mask and not display

Ibex PDF Creator Developers Guide

Images 101

pixels which match the mask, effectively making these pixels transparent and so leaving
visible the content behind the image.

The image mask is defined using the <ibex:mask> element, which must be contained
within an external-graphic element, as shown in Figure 15-21.

Figure 15-21:
FO to mask an image

<external-graphic src="url(ixsl.jpg)" z-index='10'>
<ibex:mask

red-min="255" red-max="255"
green-min="255" green-max="255"
blue-min="255" blue-max="255"/>

</external-graphic>

To use the ibex:mask element you must reference the ibex namespace in your FO as
shown in Figure 15-22.

Figure 15-22:
Referencing the ibex

namespace

<root
xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format">

The mask defines the minimum and maximum values for each of the red, green and blue
components of an image. A mask using these values is applicable only to images which
are in RGB format with 24 bits per pixel.

For CMYK images, attributes called c-min, c-max, m-min, m-max, y-min, y-max, k-min and
k-max define the minimum and maximum values for each of the cyan, magenta, yellow
and black components of the image.

The image mask shown above causes any pixel which has red=255, green=255 and
blue=255 to not be rendered. As a pixel with red, green and blue all equal to 255 is white,
this means any white pixels will not be rendered.

Figure 15-23 shows some text over which we have placed an image with red and black
letters on a white background.

Figure 15-23:
Image placed over

text

This is some text that will be behind the image. This is
some text that will be behind the image. This is some text
that will be behind the image. This is some text that will
be behind the image. This is some text that will be behind
the image. This is some text that will be behind the
image. This is some text that will be behind the image.
This is some text that will be behind the image.

If we add a mask to eliminate white pixels the image then appears as shown in
Figure 15-24.

Figure 15-24:
Image with masking This is some text that will be behind the image. This is

some text that will be behind the image. This is some text
that will be behind the image. This is some text that will
be behind the image. This is some text that will be behind
the image.

15.8.4 Transparent Images using SVG

Transparent images can also be implemented by placing a SVG image over the top of
other content. This approach uses the vector SVG renderer introduced in Ibex 2.1.2 and is

Ibex PDF Creator Developers Guide

102 Images

only available when using .NET 1.1 or higher. This is the best approach for transparent
images because (a) there is no background on the SVG image so the best clarity is
achieved, and (b) SVG uses a vector renderer which creates a smaller PDF file than you
would get using a bitmap image.

Figure 15-25 shows the FO to put the word "ibex" over some text. The resulting output is
shown in Figure 15-26.

Figure 15-25:
FO using SVG to

place content over
text

<block-container>
<block-container space-before="6pt"
absolute-position="absolute" top="-1.6cm"

left="5cm">
<block>

<instream-foreign-object z-index="30">
<svg width="315" height="100"

xmlns="http://www.w3.org/2000/svg">
<text x="30" y="60" fill="blue" stroke="blue"

font-size="61pt" font-style="italic"
style="font-family:arial;stroke-width:0.5">
Ibex

</text>
</svg>

</instream-foreign-object>
</block>

</block-container>
</block-container>

Figure 15-26:
Text overlaid using

SVG

This is some text which will be behind the image. This is some text
which will be behind the image. This is some text which will be
behind the image. This is some text which will be behind the image.
This is some text which will be behind the image. This is some text
which will be behind the image. This is some text which will be
behind the image. This is some text which will be behind the image.IbexIbex

15.9 Network credentials used in accessing images
Ibex can retrieve images from HTTP servers as shown in Figure 15-27 below. By default
Ibex will do this using the credentials of the process which is creating the PDF file. If Ibex
is running in an ASP.NET server then the default configuration is that ASP runs as the
ASPNET user. This user does not have permissions to access other servers and so will not
be able to retrieve images from other servers.

Figure 15-27:
FO to insert an

image from an HTTP
server

<block space-before="6pt">
<external-graphic border="1pt solid black"

src="url(http://www.xmlpdf.com/images/download2.gif)"
content-width="200%" content-height="200%"/>

</block>

The FODocument object supports the setNetworkCredentials() method. This method
takes 4 parameters, as shown in Figure 15-28.

Figure 15-28:
The

setNetworkCredenti
als method

public void setNetworkCredentials(
string prefix,
string username,
string password,
string domain)

Ibex PDF Creator Developers Guide

Images 103

The parameters are:

prefix The start of a URL, such as "http://www.xmlpdf.com". Any image URL which
starts with this prefix will use these credentials.

username the username passed to the remote server

password the password passed to the remote server

domain the domain name passed to the remote server

Each call to setNetworkCredentials() is passed a prefix which is compared with image
URLs to see which set of credentials to use.

For example if your application accesses two HTTP servers using different credentials
your code might look like the code in Figure 15-29. Obviously you would get the
username and password information from somewhere in your application rather than
hard coding them.

Figure 15-29:
Setting credentials

for different servers

FODocument doc = new FODocument()

doc.setNetworkCredentials("http://www.xmlpdf.com","user1","password1","domain1");
doc.setNetworkCredentials("http://www.ibex4.com","user2","password2","domain2");

Internally Ibex uses the System.Net.WebRequest and System.Net.NetworkCredential
objects to pass credentials to the remote server. If credentials have been passed to Ibex
using the setNetworkCredentials() method a new NetworkCredential object is created
when creating the WebRequest object. SO the actual forwarding of the credentials to
the remote server is all done by the .NET framework.

Calls to setNetworkCredentials() should be made before the generate() method is
called.

15.10 Multi-page TIFF image processing
Ibex has an extension attribute "ibex:page" which is used to specify which page of a
multi-page TIFF image should be included in the PDF file.

FO to place the third page of a multi-page TIFF image is shown in Figure 15-30.

Figure 15-30:
Specifying the page of

a multi-page TIFF
image

<block>
<external-graphic src="url('7pages.tif')" ibex:page="3"/>

</block>

104 Images

Scalable Vector Graphics (SVG) images 105

Chapter 16

Scalable Vector Graphics (SVG)
images
Ibex supports the inclusion of Scalable Vector Graphics (SVG) images in the PDF file. SVG
images retain their vector format inside the PDF file, so will remain precise under high
magnification unlike bitmap images which will be come pixellated.

SVG images are inserted into the document using either the <fo:external-graphic> or
<fo:instream-foreign-object> elements. Images can be included inline like this:

<fo:block border="1pt solid red">
<fo:instream-foreign-object>

<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20">
<rect width="10" height="10" fill="green"/>

</svg>
</fo:instream-foreign-object>

</fo:block>

or from an external file like this:

<fo:block border="1pt solid red">
<fo:external-graphic src="url(file.svg)"/>

</fo:block>

where the external file contains the SVG image like this:

<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20">
<rect width="10" height="10" fill="green"/>

</svg>

If an image occurs more than once in the document it should be loaded from an external
file so that it is only store in the PDF once.

16.2 Namespaces
The SVG image must begin with the <svg> element in the namespace
"http://www.w3.org/2000/svg". Images which do not declare the namespace will not be
included in the PDF.

Ibex PDF Creator Developers Guide

106 Scalable Vector Graphics (SVG) images

16.3 Image size
The size of the image should be specified using the width and height attributes the outer
<svg> element. These can be absolute measurements such as "3cm" or scalar values
such as "400". Scalar values are assumed to be pixels and are converted to inches based
on 1 pixel = 1/96 inch. Percentages cannot be effectively used; the size of the block
containing the image is determined from the size of the image, at the time the image is
processed the size of the containing block is unknown.

16.4 Summary of supported elements
This section briefly documents the degree to which SVG elements are supported in Ibex.
It is not an SVG manual. Information on the SVG specification can be found at
http://www.w3.org/TR/SVG11/expanded-toc.html

Animation of SVG elements using javascript is not supported.

16.4.1 <svg>

The <svg> element is used to define the size and shape of the image (using the width
and height attributes) and to establish a new coordinate system using the viewBox
attribute.

16.4.2 <g>

The <g> element used to move the coordinate system using the transform attribute.
Supported transform operations are:

Operation Effect
translate(x,y) translate the coordinate system x units horizontally and y units

vertically
translate(x) translate the coordinate system x units horizontally and zero

units vertically
matrix(a,b,c,d,e,f) multiply the current transformation matrix by the one specified
scale(x,y) scale the coordinate system x units horizontally and y units

vertically
rotate(angle) rotate the coordinate system angle degrees about the origin
rotate(angle,x,y) rotate the coordinate system angle degrees about the point x,y
skewX(angle) skew the coordinate system angle degrees along the X axis
skewY(angle) skew the coordinate system angle degrees units along the Y axis

Multiple transformations can be performed by placing them one after the other in the
transform attribute, like this:

<g transform="translate(10,20) scale(2,3) rotate(30)">

Transforms will be applied in the order in which they appear.

Ibex PDF Creator Developers Guide

Scalable Vector Graphics (SVG) images 107

16.4.3 <defs>

The <defs> element is supported as a container for other elements. See <symbol> below
for an example.

16.4.4 <desc>

The <desc> element is ignored.

16.4.5 <title>

The <title> element is ignored.

16.4.6 <symbol>

The <symbol> element is supported. The following image shows an example of
definining a system using <symbol> and retrieving it using <use>.

<?xml version="1.0" standalone="yes"?>
<svg width="10cm" height="3cm" viewBox="0 0 100 30"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>

<symbol id="MySymbol" viewBox="0 0 20 20">
<rect x="1" y="1" width="8" height="8"/>
<rect x="11" y="1" width="8" height="8"/>
<rect x="1" y="11" width="8" height="8"/>
<rect x="11" y="11" width="8" height="8"/>

</symbol>
</defs>

<use x="45" y="10" width="10" height="10" xlink:href="#MySymbol" fill="blue" />

</svg>

The <use> element will find the symbol element with id="#MySymbol" and display the
content of this element, which should look like this:

16.4.7 <use>

The <use> element is supported, see above for an example. Note that as this element
uses the xlink:href attribute it is necessary to declare the
xmlns:xlink="http://www.w3.org/1999/xlink" namespace.

Ibex PDF Creator Developers Guide

108 Scalable Vector Graphics (SVG) images

16.4.8 <image>

The <image> element is supported. This element embeds an image inside the SVG image.
For example this image will display a rectangle and on top of that display the image held
in the file "use_symbol.svg":

<?xml version="1.0"?>
<svg width="4cm" height="2cm" viewBox="0 0 200 100"
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns="http://www.w3.org/2000/svg" version="1.1" preserveAspectRatio="none">

<rect width="300" height="150" stroke="red" stroke-width="1" fill="silver"/>

<image x="20" y="20" xlink:href="use_symbol.svg" width="100" height="100"/>

</svg>

16.4.9 <switch>

The <switch> element is ignored.

16.4.10 <path>

The <path> element is supported. Internally PDF does not support quadratic Bézier
curves so they are converted to cubic Bézier curves. The following SVG draws a simple
curve with marked end points:

<?xml version="1.0" standalone="no"?>
<svg width="6cm" height="5cm" viewBox="0 0 1200 600"
xmlns="http://www.w3.org/2000/svg">
<rect x="1" y="1" width="1198" height="598" fill="none" stroke="blue"

stroke-width="1" />

<path d="M200,300 Q400,50 600,300 T1000,300" fill="none" stroke="red"
stroke-width="5" />
<!-- End points -->
<g fill="black" >

<circle cx="200" cy="300" r="10"/>
<circle cx="600" cy="300" r="10"/>
<circle cx="1000" cy="300" r="10"/>

</g>
<!-- Control points and lines from end points to control points -->
<g fill="#888888" >

<circle cx="400" cy="50" r="10"/>
<circle cx="800" cy="550" r="10"/>

</g>
<path d="M200,300 L400,50 L600,300

L800,550 L1000,300"
fill="none" stroke="#888888" stroke-width="2" />

</svg>

Ibex PDF Creator Developers Guide

Scalable Vector Graphics (SVG) images 109

The curve looks like this:

16.4.10.1 Path line join shapes

The shape where a path changes direction is set with the stroke-linejoin attribute.
Possible values are:

Value Shape
stroke-linejoin="miter"

stroke-linejoin="bevel"

stroke-linejoin="round"

16.4.11 <style>

The <style> element is currently implemented to some extent in .Net. In .Net the class
attribute can be used in conjunction with a style to apply that style to an element.

16.4.12 <rect>

The <rect> element is supported. A simple rectangle can be drawn like this:

<svg xmlns="http://www.w3.org/2000/svg" width="400" height="120" >
<rect x="10" y="10" width="100" height="100" fill="none" stroke="red"/>

</svg>

resulting in this image:

Ibex PDF Creator Developers Guide

110 Scalable Vector Graphics (SVG) images

16.4.13 <circle>

The <circle> element is supported. A simple circle can be drawn like this:

<svg xmlns="http://www.w3.org/2000/svg" width="400" height="120" >
<circle cx="50" cy="50" r="30" fill="none" stroke="red"/>

</svg>

resulting in this image:

16.4.14 <ellipse>

The <ellipse> element is supported. A simple ellipse can be drawn like this:

<svg xmlns="http://www.w3.org/2000/svg" width="400" height="200" >
<ellipse cx="100" cy="100" rx="75" ry="50" fill="none" stroke="black"/>

</svg>

resulting in this image:

Ibex PDF Creator Developers Guide

Scalable Vector Graphics (SVG) images 111

16.4.15 <line>

The <line> element is supported. A simple line can be drawn like this:

<svg xmlns="http://www.w3.org/2000/svg" width="400" height="400" >
<line x1="10" y1="10" x2="100" y2="10" stroke="blue" stroke-width="4"/>

</svg>

resulting in this image:

16.4.15.1 Line end shapes

The shape of the end of a line is set with the stroke-linecap attribute. Possible values are:

Value Shape
stroke-linecap="butt"
stroke-linecap="round"
stroke-linecap="square"

The end of the line is the same shape as the default
stroke-linecap="butt" but projects further beyond the end
coordinate.

16.4.15.2 Dashed lines

Dashed lines are supported using the stroke-dasharray attribute. A dashed line can be
drawn like this:

<svg xmlns="http://www.w3.org/2000/svg" width="400" height="400" >
<line x1="10" y1="10" x2="100" y2="10" stroke="blue" stroke-width="4"

stroke-dasharray="3 2"/>
</svg>

resulting in this image:

Ibex PDF Creator Developers Guide

112 Scalable Vector Graphics (SVG) images

16.4.16 <polyline>

The <polyline> element is supported. A simple polyline can be drawn like this:

<svg xmlns="http://www.w3.org/2000/svg" width="12cm" height="4cm"
viewBox="0 0 1200 400">
<polyline fill="none" stroke="blue" stroke-width="10"

points="50,375
150,375 150,325 250,325 250,375
350,375 350,250 450,250 450,375
550,375 550,175 650,175 650,375
750,375 750,100 850,100 850,375
950,375 950,25 1050,25 1050,375
1150,375" />

</svg>

resulting in this image:

16.4.17 <polygon>

The <polygon> element is supported. A simple polygon can be drawn like this:

<svg xmlns="http://www.w3.org/2000/svg" width="12cm" height="4cm"
viewBox="0 0 1200 400">

<polygon fill="red" stroke="blue" stroke-width="10"
points="350,75 379,161 469,161 397,215
423,301 350,250 277,301 303,215
231,161 321,161" />

<polygon fill="lime" stroke="blue" stroke-width="10"
points="850,75 958,137.5 958,262.5

850,325 742,262.6 742,137.5" />
</svg>

resulting in this image:

Ibex PDF Creator Developers Guide

Scalable Vector Graphics (SVG) images 113

16.4.18 <text>

The <text> element is supported.

16.4.19 <tspan>

The <tspan> element is not implemented.

16.4.20 <textpath>

The <textpath> element is not implemented.

16.4.21 <pattern>

The <pattern> element is not implemented.

16.5 Opacity
The attributes stroke-opacity and fill-opacity are supported. Using the group opacity
attribute to apply opacity to a group of elements is not supported, instead the opacity
value is applied as if stroke-opacity and fill-opacity has been specified.

This example shows a transparent blue rectangle drawn over an opaque red rectangle.

<svg xmlns="http://www.w3.org/2000/svg" width="400" height="140" >
<rect width="400" height="140" fill="none" stroke="silver"/>
<g transform="translate(10,10)">

<rect width="100" height="100" fill="red"/>
</g>
<g transform="translate(30,30)">

<rect width="100" height="100" fill="blue" stroke-width="1" fill-opacity="0.3" />
</g>

</svg>

resulting in this image:

16.6 Markers
Markers are supported at the start and end of <line> and <path> elements. The
<marker> element contains a separate drawing which can be reused. This example
shows an arrowhead which is drawn at the each end of a line:

Ibex PDF Creator Developers Guide

114 Scalable Vector Graphics (SVG) images

<?xml version="1.0" standalone="no"?>
<svg width="4in" height="2in"

viewBox="0 0 4000 2000" version="1.1"
xmlns="http://www.w3.org/2000/svg">

<defs>
<marker id="RedTriangle" viewBox="0 0 10 10" refX="0" refY="5"
markerUnits="strokeWidth"
markerWidth="4" markerHeight="3"
orient="auto" fill="red">
<path d="M 0 0 L 10 5 L 0 10 z" />

</marker>
</defs>
<rect x="10" y="10" width="3980" height="1980"

fill="none" stroke="blue" stroke-width="10" />

<g transform="translate(400,1700) scale(.8)">
<line x1="0" x2="1000" y1="0" y2="0" stroke="red" stroke-width="100"

marker-end="url(#RedTriangle)"
marker-start="url(#RedTriangle)"/>

</g>

<g transform="translate(400,700) scale(.8)">
<line x1="0" x2="1000" y1="300" y2="0" stroke="red" stroke-width="30"

marker-end="url(#RedTriangle)"
marker-start="url(#RedTriangle)"/>

</g>

</svg>

In this example the arrowhead appears once in the SVG, and is rendered four times. Each
time it is rendered its rotaton and size are changed to match the rotation and size of the
line.

16.7 Linear gradients
Linear gradients are supported. This example produces a gradient from red to yellow
horizontally:

<?xml version="1.0" standalone="no"?>
<svg width="8cm" height="4cm" viewBox="0 0 800 400" version="1.1"

xmlns="http://www.w3.org/2000/svg">

<g>
<defs>
<linearGradient id="MyGradient"

x1="100" x2="500" gradientUnits="userSpaceOnUse">
<stop offset="5%" stop-color="#F60" />
<stop offset="95%" stop-color="#FF6" />

</linearGradient>
</defs>

<rect fill="none" stroke="blue"

Ibex PDF Creator Developers Guide

Scalable Vector Graphics (SVG) images 115

x="1" y="1" width="798" height="398"/>

<rect fill="url(#MyGradient)" stroke="black" stroke-width="5"
x="100" y="100" width="600" height="200"/>

</g>
</svg>

producing this image:

The interpretation of the values specified for the coordinates x1/x2/y1/y2 of the
linearGradient element changes depending on value specified for gradientUnits.

When gradientUnits="userSpaceOnUse" the specified values are in "user space", which
is the space defined by the prevailing <g> element. The specified coordinates are relative
to the prevailing <g> element, so two elements which use the same gradient as their fill
color will appear differently if they are placed in different locations on the page.

This SVG image shows rectangles using the same gradient in conjunction with
gradientUnits="userSpaceOnUse"

<?xml version="1.0" standalone="no"?>
<svg width="8cm" height="3cm" viewBox="0 0 1000 450" version="1.1"
xmlns="http://www.w3.org/2000/svg">
<g>

<defs>
<linearGradient id="linear_userSpaceOnUse" gradientUnits="userSpaceOnUse"

x1="100" y1="100" x2="700" y2="300">
<stop offset="5%" stop-color="#ff0000" />
<stop offset="95%" stop-color="#0000ff" />

</linearGradient>
</defs>

<rect fill="none" stroke="blue" x="1" y="1" width="990" height="440"/>

<g transform="translate(10,50)">
<rect fill="url(#linear_userSpaceOnUse)" x="10" y="10" width="600"

height="100"/>
<rect fill="url(#linear_userSpaceOnUse)" x="200" y="120" width="600"

height="100"/>
</g>

</g>
</svg>

Ibex PDF Creator Developers Guide

116 Scalable Vector Graphics (SVG) images

producing this image:

When gradientUnits="objectBoundingBox" the specified values are relative to the
bounding box of the element being filled, and should be expressed as fractions of the
dimensions of the element being filled. The values for coordinates should be in the range
[0..1], so for example specifying x1="0" starts the gradient at the left hand edge of the
element being filled, and specifying x1="0.2" starts the gradient at 20% of the width of
that element. As the gradient is positioned relative to the element being filled, two
element using the same gradient will appear the same regardless of the position of the
element.

This SVG image shows rectangles using the same gradient in conjunction with
gradientUnits="objectBoundingBox"

<?xml version="1.0" standalone="no"?>
<svg width="8cm" height="3cm" viewBox="0 0 1000 450" version="1.1"
xmlns="http://www.w3.org/2000/svg">
<g>

<defs>
<linearGradient id="linear_objectBoundingBox" x1="0" y1="0" x2="1" y2="1">

<stop offset="5%" stop-color="#ff0000" />
<stop offset="95%" stop-color="#0000ff" />

</linearGradient>

</defs>

<rect fill="none" stroke="blue" x="1" y="1" width="990" height="440"/>

<g transform="translate(10,50)">
<rect fill="url(#linear_userSpaceOnUse)" x="10" y="10" width="600"

height="100"/>
<rect fill="url(#linear_userSpaceOnUse)" x="200" y="120" width="600"

height="100"/>
</g>

</g>
</svg>

producing this image:

Ibex PDF Creator Developers Guide

Scalable Vector Graphics (SVG) images 117

16.8 Radial gradients
Radial gradients are supported from version 5.7.6 onwards.

The interpretation of the values specified for the coordinates cx/cy/r/fx/fy of the
radialGradient element changes depending on value specified for gradientUnits.

When gradientUnits="userSpaceOnUse" the specified values are in "user space", which
is the space defined by the prevailing <g> element. The specified coordinates are relative
to the prevailing <g> element, so two elements which use the same gradient as their fill
color will appear differently if they are placed in different locations on the page.

This SVG image shows rectangles using the same gradient in conjunction with
gradientUnits="userSpaceOnUse"

<?xml version="1.0" standalone="no"?>
<svg width="8cm" height="3cm" viewBox="0 0 1000 550" version="1.1"
xmlns="http://www.w3.org/2000/svg">

<g>
<defs>
<radialGradient id="radial_userSpaceOnUse" gradientUnits="userSpaceOnUse"

cx="400" cy="200" r="300" fx="400" fy="200">
<stop offset="0%" stop-color="green" />
<stop offset="50%" stop-color="blue" />
<stop offset="100%" stop-color="red" />

</radialGradient>
</defs>

<rect fill="none" stroke="blue" x="1" y="1" width="990" height="530"/>
<rect fill="url(#radial_userSpaceOnUse)" stroke="black" stroke-width="5" x="100"

y="100" width="600" height="200"/>
<rect fill="url(#radial_userSpaceOnUse)" stroke="black" stroke-width="5" x="100"

y="310" width="600" height="200"/>
</g>

</svg>

producing the image below, in which you can clearly see the gradient circles are
centered within the first rectangle.

When gradientUnits="objectBoundingBox" the specified values are relative to the
bounding box of the element being filled, and should be expressed as fractions of the
dimensions of the element being filled. The values for coordinates should be in the range
[0..1], so for example specifying x1="0" starts the gradient at the left hand edge of the
element being filled, and specifying x1="0.2" starts the gradient at 20% of the width of
that element. As the gradient is positioned relative to the element being filled, two
element using the same gradient will appear the same regardless of the position of the
element.

Ibex PDF Creator Developers Guide

118 Scalable Vector Graphics (SVG) images

This SVG image shows rectangles using the same gradient in conjunction with
gradientUnits="userSpaceOnUse"

producing the image below.

Absolute Positioning 119

Chapter 17

Absolute Positioning
Content can be positioned anywhere on the page by placing the content in a
block-container element and setting the absolute-position attribute.

If the absolute-position attribute is set to "fixed", the content will then be positioned on
the page relative to the page area which contains the block-container element.

If the absolute-position attribute is set to "absolute", the content will be positioned on
the page relative to the reference area which contains the block-container element. The
reference area is not the containing block, it is the containing region, table-cell,
block-container, inline-container or table-caption. In XSL-FO 1.0, the specification was
ambiguous and the block-container was positioned relative to the containing area, but in
XSL 1.1 this has been clarified to mean the containing reference area.

17.1 Positioning block-containers
It is important to realise that block-containers are not positioned relative to the
containing block. Figure 17-1 shows FO with two absolutely positioned block containers.
Both block-containers will be positioned relative to the containing region, because the
region is the containing reference area. As they both have the same top attribute they
will both be positioned in the same place.

Figure 17-1:
Badly positioned
block containers

<flow flow-name="body">
<block>

some text
<block-container absolute-position="absolute" height="2cm" top="3cm">

<block>
in block-container one

</block>
</block-container>

</block>

<block>
some more text
<block-container absolute-position="absolute" height="2cm" top="3cm">

<block>
in block-container two

</block>
</block-container>

</block>
</flow>

The simplest way to position a block-container is to place it inside another
block-container which does not have the absolute-position attribute. FO for doing this is
shown in Figure 17-2. The outer block-container is not absolutely positioned and will be

Ibex PDF Creator Developers Guide

120 Absolute Positioning

placed in the normal flow of content. The inner block-container is absolutely positioned
relative to the outer one.

Figure 17-2:
Positioned a

block-container using
another

block-container

<flow flow-name="body">
<block>

some text
<block-container>
<block-container absolute-position="absolute" height="2cm" top="3cm">

<block>
in block-container one

</block>
</block-container>

</block-container>
</block>

<block>
some more text
<block-container>
<block-container absolute-position="absolute" height="2cm" top="3cm">

<block>
in block-container two

</block>
</block-container>

</block-container>
</block>

</flow>

17.2 Positioning and sizing block containers
A block-container with absolute-position = "absolute" is positioned relative to its
containing reference area.

The distance between the left edge of the block-container and the left edge of the
containing reference area is set by the left attribute. This attribute specifies the offset of
the block-container's left edge from the containing reference area's left edge. The
default value is "0pt", which causes the two edges to be in the same place. Positive
values of left move the left edge of the block-container to the right, making the
block-container smaller.

The distance between the right edge of the block-container and the right edge of the
containing reference area is set by the right attribute. This attribute specifies the offset
of the block-container's right edge from the containing reference area's right edge. The
default value is "0pt", which causes the two edges to be in the same place. Positive
values of right move the right edge of the block-container to the left, making the
block-container smaller.

The distance between the top edge of the block-container and the top edge of the
containing reference area is set by the top attribute. This attribute specifies the offset of
the block-container's top edge from the containing reference area's top edge. The
default value is "0pt", which causes the two edges to be in the same place. Positive
values of top move the top edge of the block-container downwards, making the
block-container smaller.

The distance between the bottom edge of the block-container and the bottom edge of
the containing reference area is set by the bottom attribute. This attribute specifies the
offset of the block-container's bottom edge from the containing reference area's
bottom edge. The default value is "0pt", which causes the two edges to be in the same

Ibex PDF Creator Developers Guide

Absolute Positioning 121

place. Positive values of bottom move the bottom edge of the block-container upwards,
making the block-container smaller.

If none of the left, right, top or bottom attributes is specified the block-container will be
the same size as the reference area which contains it. This is because the offsets all default
to "0pt" so the edges of the block-container are the same as the edges of its containing
reference area. This means a block-container with absolute-position= "absolute" which is
placed in a region will by default fill that region.

The height of a block-container can be specified with the height attribute, and the width
with the width attribute.

Figure 17-3 shows the FO for a block container with height and width of 10cm, and an
inner block-container which is offset from the outer one, including a negative offset on
the left side. The output from this FO appears in Figure 17-4.

Figure 17-3:
block-containers

positioned and sized

<flow flow-name="body">
<block>

<block-container height="10cm" width="10cm" margin-left="3cm"
background-color="#dddddd">

<block>outer block container</block>
<block-container absolute-position="absolute"

top="1cm"
right="2cm"
left="-2cm"
bottom="4cm"
background-color="#77ccdd"

>
<block>

inner block-container
</block>

</block-container>
</block-container>

</block>
</flow>

Figure 17-4:
block-containers

positioned and sized

outer block container

inner block-container

Ibex PDF Creator Developers Guide

122 Absolute Positioning

The example in Figure 17-4 shows how using a negative left value will position the
content to the left of the containing reference area. This is the technique used in this
manual to place the labels next to each example.

Columns 123

Chapter 18

Columns
XSL-FO allows us to define a page which has multiple columns, just like this one.

This can only be done for whole pages, not for partial pages. However if we are in a
region which has multiple columns we can treat it as a single-column region and place
output across the whole width of the multi-column page by setting span="all" on
block-level elements which appear immediately below the flow element.

Columns are defined by setting the column-count attribute of a body region element to
a value greater than 1, and optionally setting the column-gap attribute to define a gap
between the columns.

The page master for this is similar to the one shown in Figure 18-1.

Figure 18-1:
The page master for a

multi-column page

<simple-page-master
master-name="chapter-2col-odd">

<region-start extent='2.5cm'/>
<region-end extent='2.5cm'/>
<region-body column-count='2'

region-name="body"
margin='2.5cm'/>

<region-after
region-name="footer-odd" extent="2.5cm"/>

<region-before
region-name="header-odd" extent="2.5cm"/>
</simple-page-master>

All the blocks above, including this one, have span="all" set so that they span the whole
page.

This block does not have span="all", so it
will be fitted into the first column in the
page. Text will flow to the bottom of this
page and then start at the top of the next
column.

If there are blocks above this one on the
page which have span="all" (as there are)
then they will remain in place and the text
which is in only one column will be placed
in the next column, below the span="all"
blocks.

We deliberately repeat the paragraph to
demonstrate this wrapping. This block
does not have span="all", so it will be
fitted into the first column in the page.

Text will flow to the bottom of this page
and then start at the top of the next
column. If there are blocks above this one
on the page (as there are) which have
span="all" then they will remain in place
and the text which is in only one column
will be placed in the next column, below
the span="all" blocks.

It is also possible to have a page start with
content in two columns (like this).

When a block-level object is encountered
which has span="all" the content already
on the page is pushed up to the top, and
the block with span="all" is spread over
the two columns.

124 Columns

Bookmarks 125

Chapter 19

Bookmarks
Bookmarks are the entries which appear on the right in a PDF file in Adobe Acrobat.
They are used to navigate directly to locations within the document. They also have a
hierarchical structure, where one bookmark can contain a set of child bookmarks which
in turn can themselves contain other bookmarks.

The bookmark-tree element is optional. If used it should be placed under the root
element, after the layout-master-set and declarations elements and before any
page-sequence or page-sequence-wrapper elements.

The structure of a bookmark tree is shown in Figure 19-1.

Figure 19-1:
A bookmark tree

<bookmark-tree>
<bookmark internal-destination="section-1">

<bookmark-title>Chapter 1</bookmark-title>
<bookmark internal-destination="section-1-1">
<bookmark-title>Section 1</bookmark-title>

</bookmark>
<bookmark internal-destination="section-1-2">
<bookmark-title>Section 2</bookmark-title>

</bookmark>
</bookmark>
<bookmark internal-destination="section-2">

<bookmark-title>Chapter 2</bookmark-title>
<bookmark internal-destination="section-2-1">
<bookmark-title>Section 1</bookmark-title>

</bookmark>
</bookmark>

</bookmark-tree>

We can see the following from the structure shown in Figure 19-1.

• The bookmarks are contained in a bookmark-tree element.

• A bookmark element has an internal-destination attribute identifying where in the
document it links to. The value for this attribute should be used as the id attribute on
the destination element.

• A bookmark element can contain other bookmark elements.

• The text which appears in the bookmark is contained within a bookmark-title element.
Ibex supports using Unicode text in bookmarks.

The example above creates bookmarks like the ones in the Ibex manual.

Ibex PDF Creator Developers Guide

126 Bookmarks

The bookmarks which have child bookmark elements appear in the PDF file in a closed
state, so the user can click the '+' next to them to display the child elements. If you
specify starting-state="show" on a bookmark or bookmark-tree element it's immediate
children will be visible when the PDF file is opened.

Configuration 127

Chapter 20

Configuration
All configuration of Ibex is done using the Settings class which is accessed from the
ibex4.FODocument object. This class has many properties which can be changed to
configure the operation of Ibex.

Properties of the Settings class should be changed prior to calling the generate()
method on the FODocument object. The fact that the Settings object is a property of the
FODocument object means that different documents can have different Settings values.
For example Figure 20-1 shows how to set the default line height to 1.4em.

Figure 20-1:
Example usage of

the Settings object

using System;

using ibex4;

public class IbexTester {

public static void Main(string[] args) {

FODocument doc = new FODocument()

doc.Settings.LineHeightNormal = "1.4em";

using(Stream xml =
new FileStream(args[0], FileMode.Open, FileAccess.Read)) {

using (Stream output =
new FileStream(args[1], FileMode.Create, FileAccess.Write)) {

doc.generate(xml, output);
}

}
}

}

Ibex PDF Creator Developers Guide

128 Configuration

20.1 Fonts
The following properties on the Settings change the way fonts a processed. By default
each absolute font size (small, medium, large etc.) is 1.2 times larger than the previous
size.

Property Type Default Notes

XX_Small string 7.0pt Must end in 'pt'.

X_Small string 8.3pt Must end in 'pt'.

Small string 10.0pt Must end in 'pt'.

Medium string 12.0pt Must end in 'pt'.

Large string 14.4pt Must end in 'pt'.

X_Large string 17.4pt Must end in 'pt'.

XX_Large string 20.7pt Must end in 'pt'.

Property Type Default Notes

Smaller string 0.8em Must end in 'em'.

Larger string 1.2em Must end in 'em'.

20.2 Line height
The following properties on the Settings change the default line height. Ideally
Settings.LineHeightNormal should end in 'em' to make line height proportional to the
font height.

Property Type Default Notes

LineHeightNormal string 1.2em

20.3 Page size
The following properties on the Settings change the default page size.

Property Type Default Notes

PageHeight string 297mm

PageWidth string 210mm

Ibex PDF Creator Developers Guide

Configuration 129

20.4 Include paths
The following properties on the Settings effect retrieving XML or XSL files.

Property Type Default Notes

BaseURI_XML string This value sets the base URI for including
images and other XML files. When an
external-graphic element specifies a
relative path, Settings.BaseURI_XML is
the base URI used in accordance with
the rfc2396 URI Specification. When an
XML file uses an entity to include
another XML file, Settings.BaseURI_XML
is the base URI used when Ibex searches
for the included XML file.

BaseURI_XSL string This value sets the base URI for including
other XSL files. When an xsl:include
element is used to include another XSL
stylesheet, Settings.BaseURI_XSL can be
used to specify the location the included
stylesheet should be loaded from.

20.5 Images
The following properties on the Settings effect retrieving images specified using the
external-graphic element.

Property Type Default Notes

BaseURI_XML string This value sets the base URI for including
images and other XML files. When an
external-graphic element specifies a
relative path, Settings.BaseURI_XML is
the base URI used in accordance with
the rfc2396 URI Specification. When an
XML file uses an entity to include
another XML file, Settings.BaseURI_XML
is the base URI used when Ibex searches
for the included XML file.

WebRequestTimeoutMs int 300 When an external-graphic element
specifies an image is retrieved from a
web server, this is the timeout used for
the call to the web server. Units are
milliseconds.

http://gbiv.com/protocols/uri/rfc/rfc2396.html#rfc.section.5.1
http://gbiv.com/protocols/uri/rfc/rfc2396.html#rfc.section.5.1
http://gbiv.com/protocols/uri/rfc/rfc2396.html#rfc.section.5.1
http://gbiv.com/protocols/uri/rfc/rfc2396.html#rfc.section.5.1
http://gbiv.com/protocols/uri/rfc/rfc2396.html#rfc.section.5.1
http://gbiv.com/protocols/uri/rfc/rfc2396.html#rfc.section.5.1

Ibex PDF Creator Developers Guide

130 Configuration

20.6 Border widths
The following properties on the Settings change the values for border widths specified
with constants like 'thin'.

Property Type Default Notes

BorderWidthThin string 1pt

BorderWidthMedium string 2pt

BorderWidthThick string 3pt

20.7 Layout
The following properties on the Settings change the appearance of content in the PDF
file.

Property Type Default Notes

OverflowIsVisible bool true By default a region has overflow='auto',
leaving it up the Ibex to decide whether
content which overflows the bottom
edge of a region is displayed or
discarded.
If Settings.OverflowIsVisible is true, the
content will be displayed, if false it will
be discarded. This property applies only
if the XSL-FO attribute 'overflow' is not
set or is set to 'auto'.

20.8 Leaders
The following properties on the Settings change the values for leader formatting
objects.

Property Type Default Notes

LeaderDot char . When leader-pattern='dots', this is the
character used as the dot

Extensions 131

Chapter 21

Extensions
This chapter details Ibex-specific extensions to XSL-FO. Typically these extensions
implement functionality such as password protecting a document which is not part of
the XSL-FO standard.

The Ibex extensions have a namespace which is specified using the xmlns attribute as
shown in Figure 21-1.

21.1 Document security
Ibex supports encryption of PDF documents and the setting of various document
permissions. This is done using the ibex:security element as shown in Figure 21-1.

Figure 21-1:
FO using the

ibex:security element

<root xmlns="http://www.w3.org/1999/XSL/Format"
xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format">

<ibex:security deny-print='true' deny-extract='true'
deny-modify='true' user-password='user' owner-password='owner'/>

...

Two levels of encryption are available, 40 bit and 128 bit. When using 40 bit encryption
available permissions which can be set including deny-print, deny-extract and
deny-modify. When using 128 bit encyption additional permissions can be set including
deny-assembly and deny-print-high-resolution. These options are details in the sections
below.

The level of encryption is specified using the bits attribute of the ibex:security element.
This defaults to "40", so specify 128 bit encryption specify bits="128".

If used the ibex:security element must occur before any page-sequence elements.

Ibex PDF Creator Developers Guide

132 Extensions

21.1.1 40 bit encryption security options

When the number of bits of encryption is set to 40 or not specified, the attributes of the
ibex:security element are:

Attribute Values Meaning

user-password Specifies a password required to open the
document in Acrobat. Once the document
is opened with the correct user password,
access is limited to permissions given
using the attributes below.

owner-password Specifies a password required to get all
rights to the document in Acrobat. Once
the document is opened with the correct
owner password the user has total control
of the document.

deny-print true
false

If this is set to true a user who opens the
document with the user password will not
be able to print the document.

deny-extract true
false

If this is set to true a user who opens the
document with the user password will not
be able to use cut-and-paste functionality
to copy part of the document.

deny-modify true
false

If this is set to true a user who opens the
document with the user password will not
be able to modify the document.

Setting any of the attributes listed above will cause Ibex to encrypt the document.

Specifying the user-password but not the owner-password will set the owner-password
to the same value as the user-password. This means anyone who can open the
document using the user password has complete control of the document.

Specifying the owner-password but not the user-password is common usage. This means
the user can open the document with limited rights without needing a password, but
cannot then change or exceed those rights without knowing the owner password.

Ibex PDF Creator Developers Guide

Extensions 133

21.1.2 128 bit encryption security options

When the number of bits of encryption is set to 128, the attributes of the ibex:security
element are:

Attribute Values Meaning

user-password Specifies a password required to open the
document in Acrobat. Once the document
is opened with the correct user password,
access is limited to permissions given
using the attributes below.

owner-password Specifies a password required to get all
rights to the document in Acrobat. Once
the document is opened with the correct
owner password the user has total control
of the document.

deny-print true
false

If this is set to true a user who opens the
document with the user password will not
be able to print the document.

deny-print-high-
resolution

true
false

If this is set to true a user who opens the
document with the user password will not
be able to print a high resolution copy of
the document. They will only be able to
print a low resolution (150dpi) version. If
deny-print="true" this attribute has no
effect and the document cannot be
printed.

deny-extract true
false

If this is set to true a user who opens the
document with the user password will not
be able to use cut-and-paste functionality
to copy part of the document.

deny-modify true
false

If this is set to true a user who opens the
document with the user password will not
be able to modify the document but can
still "assemble" it. See deny-assembly
below.

deny-assembly true
false

If deny-modify="true" and
deny-assembly="false" then the user
cannot change the document, but can
"assemble" it, which means insert, rotate
or delete pages and create bookmarks or
thumbnail images. Setting
deny-modify="true" and
deny-assembly="true" prevents assembly.

Setting any of the attributes listed above will cause Ibex to encrypt the document.

Ibex PDF Creator Developers Guide

134 Extensions

Specifying the user-password but not the owner-password will set the owner-password
to the same value as the user-password. This means anyone who can open the
document using the user password has complete control of the document.

Specifying the owner-password but not the user-password is common usage. This means
the user can open the document with limited rights without needing a password, but
cannot then change or exceed those rights without knowing the owner password.

21.2 Standard document properties
Ibex allows you to set the various properties associated with a PDF document. These
properties can be viewed in Acrobat by using the File | Document Properties | Summary
menu option or just pressing control-d.

Figure 21-2 shows FO for setting the document properties using the ibex:properties
element.

Figure 21-2:
FO using

ibex:properties

<root xmlns="http://www.w3.org/1999/XSL/Format"
xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format">

<ibex:properties
title="Ibex User Manual" subject="Ibex"
author="visual programming limited"
keywords="xml,pdf" creator="xtransform" />

...

If used the ibex:security element must occur before any page-sequence elements.

The attributes of the ibex:properties element are:

Attribute Values Meaning

title Specifies a string which becomes the title
property of the document.

subject Specifies a string which becomes the
subject property of the document.

author Specifies a string which becomes the
author property of the document.

keywords Specifies a string which becomes the
keywords property of the document.
Separate individual keywords with
commas.

creator Specifies a string which becomes the
creator property of the document. This
should be the name of the application
which created the XSL-FO document from
which the PDF file was created.

Ibex PDF Creator Developers Guide

Extensions 135

Attribute Values Meaning

page-mode Specifies how Acrobat will display the
document when it is first opened. If set to
'bookmarks' then if the document has
bookmarks they will be displayed. If set to
'thumbs' then the thumbnails tab in
Acrobat will be displayed. If set to
'fullscreen' the document will be displayed
without any toolbar, border etc.

Following the PDF standard, the document creator property should be the name of the
product which converted the content to PDF format, so this is always Ibex. Other
document properties such as creation and modification date are populated
automatically by Ibex.

21.3 Custom Document Properties
Acrobat supports the display and editing of custom document properties. These
properties are a set of name value pairs stored within the PDF file. In Acrobat 6.0 these
properties can be viewed by using the File | Document Properties menu option and
clicking on the "Custom" entry in the list box to display a screen like this:

These custom properties are inserted into the PDF using the ibex:custom element as
shown in Figure 21-3.

Figure 21-3:
FO using the

ibex:custom element

<root xmlns="http://www.w3.org/1999/XSL/Format"
xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format">

<ibex:properties title="Ibex User Manual">
<ibex:custom name="favourite color" value="blue"/>

</ibex:properties>
...

Each property must have a name and value attribute.

Ibex PDF Creator Developers Guide

136 Extensions

21.4 Image processing

21.4.1 Image resolution

Ibex adds the dpi attribute to the external-graphic element to permit managing the dots
per inch resolution of images. See Image resolution on page 98.

21.4.2 Anti-aliasing

Ibex adds the ibex:anti-alias attribute to the external-graphic element to permit
disabling anti-aliasing in order to achieve clearer images. See Image anti-aliasing on page
98.

21.4.3 Multi-page TIFF image processing

Ibex adds the ibex:page attribute to the external-graphic element to specify which page
of a muti-page TIFF image should be included in the PDF file. See Multi-page TIFF images
on page 103.

21.5 Bookmarks
XSL-FO 1.0 had no support for creating bookmarks in the PDF file. XSL 1.1 now has this
feature so the ibex:bookmark element is no longer supported.

The XSL 1.1 implementation of bookmarks is described on page 125.

21.6 Document base URL
The PDF format supports setting a base URL for links created with a basic-link element.
This base URL is prepended to the destination specified with an external-destination
attribute if (and only if) the specified destination does not start with a '/' character.

Figure 21-4 shows FO which creates a document with "http://www.xmlpdf.com" as the
base URL and a link to the page "index.html". When the user clicks on the link in the PDF
file, it will go to "http://www.xmlpdf.com/index.html".

Figure 21-4:
FO setting the

document base URL

<ibex:document-base-url value="http://www.xmlpdf.com"/>
..
<block>

<basic-link external-destination='url(index.html)'>
index.html

</basic-link>
</block>

The base URL is a document-wide property and can be set only once.

Ibex PDF Creator Developers Guide

Extensions 137

This property should not be confused with the Settings.BaseURI value which specifies a
base URI to be used when Ibex retrieves images, stylesheets and XML during creation of
the PDF file.

21.7 Ibex version
The ibex:version element inserts the version number of Ibex used to create the PDF file.
This is an inline element which inserts characters into the document. Figure 21-5 shows
FO which uses this element and the output appears in Figure 21-6.

Figure 21-5:
FO using ibex:version

<block xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format">
created with Ibex version <ibex:version/>

</block>

Figure 21-6:
Output from
ibex:version

created with Ibex version 6.11.1.3

21.8 PDF/X
Ibex can create PDF files which comply with the PDF/X standard. This is described in
detail on page 151.

21.9 Viewer Preferences
Ibex can set flags on the PDF file which control how the viewer application, such as
Acrobat Reader, will display the PDF file.

These flags are set using the ibex:viewer-preferences element as shown in Figure 21-7.

Figure 21-7:
FO using the
ibex:viewer-

preferences element

<root xmlns="http://www.w3.org/1999/XSL/Format"
xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format">

<ibex:viewer-preferences hide-toolbar="true"/>
...

The attributes for the ibex:viewer-preferences element are:

Attribute Values Meaning

hide-toolbar true
false

Set to true to hide the viewer application's
tool bars

hide-menubar true
false

Set to true to hide the viewer application's
menu bar

hide-window-ui true
false

Set to true to hide the UI and just display
the document content

fit-window true
false

Set to true to resize the viewer window to
fit the document page size

Ibex PDF Creator Developers Guide

138 Extensions

Attribute Values Meaning

center-window true
false

Set to true to center the viewer window
on the screen

display-doc-title true
false

Set to true to have the viewer display the
document title in the viewer frame rather
than the file name. The document title is
set using the title attribute of the
ibex:properties element as detailed on
page 134.

Accessiblity and PDF/UA 139

Chapter 22

Accessiblity and PDF/UA
Ibex now supports the PDF Universal Accessibility Standard and WCAG

For information on the standard see PDF/UA

22.1 Enabling PDF/UA Creation
To create a PDF/UA compliant PDF the FO file needs to have three things:

(1) a declaration of the ibex namespace on the <fo:root> element like this:

<fo:root
xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format"
...
>

(2) a language declaration, which can be done on the <fo:root> element like this:

<fo:root
xml:lang="en-US"
...
>

(3) the FO file needs to include metadata surrounded by <ibex:pdfua> tags like this:

<ibex:pdfua>
<x:xmpmeta xmlns:x="adobe:ns:meta/"

x:xmptk="Adobe XMP Core 5.6-c01591.163280, 2018/06/22-11:31:03">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:pdfuaid="http://www.aiim.org/pdfua/ns/id/">
<dc:title>
<rdf:Alt>

<rdf:li xml:lang="en">PDF/UA Document</rdf:li>
</rdf:Alt>
</dc:title>
<pdfuaid:part>1</pdfuaid:part>

</rdf:Description>
</rdf:RDF>

</x:xmpmeta>
</ibex:pdfua>

This metadata includes the title "PDF/UA Document", change that to your own
document title.

Once the three items above are included in the FO file Ibex will produce a PDF/UA
compliant file.

A complete test file with one paragraph looks like this:

https://accessible-docs.com/overview-pdf-ua-standard/

Ibex PDF Creator Developers Guide

140 Accessiblity and PDF/UA

<?xml version="1.0" encoding="utf-8"?>
<fo:root
xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format"
xml:lang="en-US"
>

<ibex:pdfua>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.6-c01591.163280,

2018/06/22-11:31:03">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:pdfuaid="http://www.aiim.org/pdfua/ns/id/">
<dc:title>

<rdf:Alt>
<rdf:li xml:lang="x-default">PDF/UA Document</rdf:li>
<rdf:li xml:lang="en">PDF/UA Document</rdf:li>

</rdf:Alt>
</dc:title>
<pdfuaid:part>1</pdfuaid:part>

</rdf:Description>
</rdf:RDF>

</x:xmpmeta>
</ibex:pdfua>

<fo:layout-master-set>
<fo:simple-page-master master-name="page" margin="1.5cm" page-height="297mm"

page-width="310mm">
<fo:region-body column-count="1" region-name="body" margin="2.75cm 0.5cm 1cm

3cm" />
</fo:simple-page-master>

</fo:layout-master-set>

<fo:bookmark-tree>
<fo:bookmark internal-destination="header1" starting-state="show">

<fo:bookmark-title>Heading One</fo:bookmark-title>
</fo:bookmark>

</fo:bookmark-tree>

<fo:page-sequence master-reference="page" initial-page-number="1" format="i"
font="12pt arial">

<fo:flow font="11pt arial" flow-name="body">
<fo:block font-size="larger" role="H1" id="header1">

Main heading
</fo:block>
<fo:block>
Hello world

</fo:block>
</fo:flow>

</fo:page-sequence>
</fo:root>

Ibex PDF Creator Developers Guide

Accessiblity and PDF/UA 141

The file created from the FO can be validated using the free PAC program. This tests
various aspects of compliance and shows the results:

The tagged pdf tree structure can be viewed:

Note that the contents of the fo:page-sequence have been placed in a "Part" structure
element. This is optional, controlled by the Settings.
PDFUA_PutPageSequenceAreasInPartElements flag.

22.2 Headers
As shown in the above example any fo:block can have the "role" property set. To create
a header use H1, H2 .. H6 as standards-compliant heading roles, like this:

<fo:block font-size="larger" role="H1" id="header1">
Main heading

</fo:block>

To disable the use of the "role" property when creating structured elements specify the
'ignore-role-attributes' property on the <ibex:pdfua> node like this:

<ibex:pdfua ignore-role-attributes="true">

Ibex PDF Creator Developers Guide

142 Accessiblity and PDF/UA

22.3 Tables
Table elements are automatically tagged according to the following table:

Element Tag
fo:table Table
fo:table-caption Caption
fo:table-header THead
fo:table-body TBody
fo:table-footer TFoot
fo:table-row TR
fo:table-cell TD or TH

Table cells inside a table header as tagged as TH. In addition:

• cells in table headers are given an "ID" property to identify them

• cells in the table body automatically have a "Headers" property which identifies which
header cell(s) are relevant headings. There might be multiple if the cell spans multiple
columns

• where are header has multiple rows, the cells in the lower rows have "Headers"
properties which reference the cells in higher rows which cover the same columns

In practice this looks like the element tree shown below, where are TH element has "ID",
"Role" and "Rowspan" properties:

Ibex PDF Creator Developers Guide

Accessiblity and PDF/UA 143

And a TD cell element in the table body has a "Headers" property which matches the
"id" property of the cell above it in the header:

22.4 Lists
List elements are automatically tagged according to the following table:

Element Tag
fo:list-block L
fo:list-item-label Lbl
fo:list-item-body Lbody

22.5 Static Content
The contents of fo:static-content elements is marked as "Artifact".

22.6 Image Alt Tags
You can specify an Alt tag to describe images with text using the "ibex:alt" property like
this:

<fo:external-graphic src="RedbrushAlpha-0.25.png" ibex:alt="picture of tree"/>

22.7 WCAG Requirements
PDF/UA documents created by Ibex support the Web Content Accessibility Guidelines 2.2
standard.

https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/

Ibex PDF Creator Developers Guide

144 Accessiblity and PDF/UA

The PAC program supports viewing WCAG compilance using the WCAG tab on the main
screen:

Each of the WCAG 2.2 requirements which relate to PDF files are explained below. The
descriptions of the requirements come from www.w3.org

22.7.1 PDF1: Applying text alternatives to images with the Alt entry in PDF documents

This requirement is satisfied. Ibex supports Alt entries for images using the ibex:alt
property on each <fo:external-graphic> elements like this:

<fo:external-graphic src="RedbrushAlpha-0.25.png" ibex:alt="picture of tree"/>

Support for the same thing on the <fo:instream-foreign-object> element will be added
soon.

22.7.2 PDF2: Creating bookmarks in PDF documents

This requirement is satisfied. Ibex supports creating bookmarks using the
<fo:bookmark-tree> and <fo:bookmark> elements like this:

<fo:bookmark-tree>
<fo:bookmark internal-destination="CONTENTS67104136">
<fo:bookmark-title>„1‡6†4†5ˆ0†6†0‡5‡0†5</fo:bookmark-title>
</fo:bookmark>
...

This creates a bookmark tree in the PDF file like this:

https://www.w3.org/WAI/WCAG22/Techniques/#pdf

Ibex PDF Creator Developers Guide

Accessiblity and PDF/UA 145

22.7.3 PDF3: Ensuring correct tab and reading order in PDF documents

This requirement is satisfied. The order of text in the PDF follows the order used in the
input formatting objects document.

22.7.4 PDF4: Hiding decorative images with the Artifact tag in PDF documents

This requirement is satisfied. The Artifact tag is applied to page headers and footers
(specifically the contents of <fo:static-content> elements) and other elements such as
table cell borders and backgrounds.

Elements marked with the Artifact tag can be viewed on the Artifacts tab of the Logical
Structure view in PAC program:

22.7.5 PDF5: Indicating required form controls in PDF forms

This requirement is not applicable as Ibex does not support creation of PDF forms as
they are not part of the XSL Formatting Objects specification.

22.7.6 PDF6: Using table elements for table markup in PDF Documents

This requirement is satisfied. Table elements are automatically tagged according to the
following table:

Element Tag
fo:table Table
fo:table-caption Caption
fo:table-header THead
fo:table-body TBody
fo:table-footer TFoot
fo:table-row row
fo:table-cell TD or TH

22.7.7 PDF7: Performing OCR on a scanned PDF document to provide actual text

This requirement is satisfied. Ibex generates actual text rather than images of text.

Ibex PDF Creator Developers Guide

146 Accessiblity and PDF/UA

22.7.8 PDF8: Providing definitions for abbreviations via an E entry for a structure element

This requirement is satisfied. The definition of an abbreviation can be specified using the
ibex:abbrev property like this:

<fo:block>
<fo:inline ibex:abbrev="National Aeronautics and Space

Administration">NASA</fo:inline>
goes to moon

</fo:block>

This can be viewed using the PAC program like so:

22.7.9 PDF9: Providing headings by marking content with heading tags in PDF documents

This requirement is satisfied.

22.7.10 PDF10: Providing labels for interactive form controls in PDF documents

This requirement is not applicable as Ibex does not support creation of PDF forms as
they are not part of the XSL Formatting Objects specification.

22.7.11 PDF11: Providing links and link text using the Link annotation and the /Link structure
element in PDF documents

This requirement is satisfied. A link annotation is created automatically when using a
<fo:basic-link> element

<fo:block text-align="justify" text-align-last="justify" space-after="3pt" >
<fo:basic-link internal-destination="id8">1. Introduction
...

Ibex PDF Creator Developers Guide

Accessiblity and PDF/UA 147

This can be viewed using the PAC program like so:

22.7.12 PDF12: Providing name, role, value information for form fields in PDF documents

This requirement is not applicable as Ibex does not support creation of PDF forms as
they are not part of the XSL Formatting Objects specification.

22.7.13 PDF13: Providing replacement text using the /Alt entry for links in PDF documents

This requirement is satisfied. Atlernative text can be provided using the ibex:alt property
of the <fo:basic-link< element

<fo:block text-align="justify" text-align-last="justify" space-after="3pt" >
<fo:basic-link internal-destination="id8" ibex:alt="basiclink">1.

Introduction
...

This can be viewed using the PAC program like so:

22.7.14 PDF14: Providing running headers and footers in PDF documents

This requirement is satisfied using the <fo:table-header> and <fo:table-footer> elements.

22.7.15 PDF15: Providing submit buttons with the submit-form action in PDF forms

This requirement is not applicable as Ibex does not support creation of PDF forms as
they are not part of the XSL Formatting Objects specification.

Ibex PDF Creator Developers Guide

148 Accessiblity and PDF/UA

22.7.16 PDF16: Setting the default language using the /Lang entry in the document catalog
of a PDF document

This requirement is satisfied using the xml:lang attribute on the <fo:root> element as
shown here:

<fo:root
xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format"
xml:lang="en-US"
>

22.7.17 PDF17: Specifying consistent page numbering for PDF documents

This requirement is satisfied using:

22.7.18 PDF18: Specifying the document title using the Title entry in the document
information dictionary of a PDF document

This requirement is satisfied.

The XML from which a PDF/UA document is created contains an entry like this:

<ibex:pdfua>
<x:xmpmeta xmlns:x="adobe:ns:meta/"
x:xmptk="Adobe XMP Core 5.6-c01591.163280, 2018/06/22-11:31:03">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:pdfuaid="http://www.aiim.org/pdfua/ns/id/">
<dc:title>

<rdf:Alt>
<rdf:li xml:lang="x-default">PDF/UA Document</rdf:li>
<rdf:li xml:lang="en">PDF/UA Document</rdf:li>

</rdf:Alt>
</dc:title>
<pdfuaid:part>1</pdfuaid:part>

</rdf:Description>
</rdf:RDF>

</x:xmpmeta>
</ibex:pdfua>

This entry is necessary for Ibex to identify the document as a PDF/UA document.

The <dc:title> element contains one or more document titles.

This XML is copied to the created PDF.

Ibex PDF Creator Developers Guide

Accessiblity and PDF/UA 149

Adobe Acrobat will interpret this XML and display the title from the <dc:title> element
like this:

but other PDF viewers do not do this, so in addition to adding the <dc:title> element to
the PDF file Ibex copies it to the catalog document properties.

22.7.19 PDF19: Specifying the language for a passage or phrase with the Lang entry in PDF
documents

This requirement is satisfied. Block and inline elements can have their language specified
using the xml:lang property like this:

<fo:block xml:lang="en-GB">
this block is "en-GB"
<fo:inline xml:lang="de-DE">but this sentence is "de-DE"</fo:inline>
this block is "erun-GB"

</fo:block>

Where there are multiple languages used in a single paragraph this creates span
elements in the document structure:

Ibex PDF Creator Developers Guide

150 Accessiblity and PDF/UA

22.7.20 PDF20: Using Adobe Acrobat Pro's Table Editor to repair mistagged tables

This requirement is satisfied. The table elements and tags are shown here using the PAC
program:

22.7.21 PDF21: Using List tags for lists in PDF documents

This requirement is satisfied. List elements are automatically tagged according to the
following table:

Element Tag
fo:list-block L
fo:list-item LI
fo:list-item-label Lbl
fo:list-item-body Lbody

22.7.22 PDF22: Indicating when user input falls outside the required format or values in PDF
forms

This requirement is not applicable as Ibex does not support creation of PDF forms as
they are not part of the XSL Formatting Objects specification.

22.7.23 PDF23: Providing interactive form controls in PDF documents

This requirement is not applicable as Ibex does not support creation of PDF forms as
they are not part of the XSL Formatting Objects specification.

PDF/X 151

Chapter 23

PDF/X
This chapter details Ibex-specific extensions to the XSL-FO XML to support creation of
PDF files which conform to the PDF/X standard.

Ibex implements the PDF/X standard using the ibex:pfdx element as shown in Figure 23-1.

Figure 23-1:
PDF/X

<root xmlns="http://www.w3.org/1999/XSL/Format"
xmlns:ibex="http://www.xmlpdf.com/2003/ibex/Format">

<ibex:pdfx color-profile-file-name="WideGamutRGB.icc"/>

...

The Ibex extensions have a namespace which is specified using the xmlns attribute as
shown above.

The ibex:pdfx element must occur before any output is generated.

Using the ibex:pdfx element will automatically set the document color space to CMYK.

The existence of the ibex:pdfx element causes Ibex to create a PDF/X compatible PDF
file. The field Settings.PDFXMode used in earlier releases has been removed.

The attributes of the ibex:pdfx element are:

Attribute Values Meaning

color-profile-file-name Full or relative path to a ICC color profile
file

registry-name Registry Name used in the PDF
OutputIntents structure. If not specified
this defaults to "http://www.color.org".

info Optional text which will become the Info
value in the first OutputIntents array
entry.

output-condition-
identifier

Optional text which will become the
OutputConditionIdentifier value in the first
OutputIntents array entry. This defaults to
"Custom"

Ibex PDF Creator Developers Guide

152 PDF/X

Attribute Values Meaning

output-condition Optional text which will become the
OutputCondition value in the first
OutputIntents array entry. This defaults to
"Custom". Acrobat proposes values such
as "TR001 SWOP/CGATS".

The color profiles is read from the specified ICC file, compressed, and embedded in the
PDF file.

23.1 Media box
The MediaBox size within the PDF file will be set to the size of the page as specified on
the simple-page-master for that page.

23.2 Bleed box
The BleedBox size defaults to the MediaBox size. The BleedBox can be specified as a
change from the MediaBox by specifying the ibex:bleed-width attribute on the
simple-page-master. This attribute specifies the distance by which the BleedBox is
smaller than the MediaBox as shown in Figure 23-2.

Figure 23-2:
Setting the bleed box

size

<simple-page-master page-height="313mm" page-width="226mm"
master-name="page" ibex:bleed-width="3mm">

If one value is used it applies to all sides of the page, if two values are used the top and
bottom edges use the first value and the left and right edges use the second. If there are
three values the top is set to the first value, the sides are set to the second value, and
the bottom is set to the third value. If there are four values, they apply to the top, right,
bottom and left edges in that order.

The following attributes can be specified to set each side explicitly: bleed-top-width,
bleed-bottom-width, bleed-right-width, bleed-left-width.

23.3 Trim box
The TrimBox size defaults to the BleedBox size. The TrimBox can be specified as a
change from the BleedBox by specifying the ibex:trim-width attribute on the
simple-page-master. This attribute specifies the distance by which the TrimBox is smaller
than the BleedBox as shown in Figure 23-3.

Figure 23-3:
Setting the trim box

size

<simple-page-master page-height="313mm" page-width="226mm"
master-name="page" ibex:trim-width="3mm">

Ibex PDF Creator Developers Guide

PDF/X 153

If one value is used it applies to all sides of the page, if two values are used the top and
bottom edges use the first value and the left and right edges use the second. If there are
three values the top is set to the first value, the sides are set to the second value, and
the bottom is set to the third value. If there are four values, they apply to the top, right,
bottom and left edges in that order.

The following attributes can be specified to set each side explicitly: trim-top-width,
trim-bottom-width, trim-right-width, trim-left-width.

23.4 Overprint
Overprint mode can be enabled for the entire page by specifying the
ibex:ibex-overprint-stroking, ibex:overprint-nonstroking and ibex:overprint-mode
attributes as shown in Figure 23-4.

Figure 23-4:
Setting the overprint

mode

<simple-page-master page-height="313mm" page-width="226mm"
master-name="page" ibex:overprint-stroking="true"
ibex:overprint-nonstroking="true" ibex:overprint-mode="1">

154 PDF/X

	1 Introduction
	1.1 The PDF creation process
	1.2 Terminology
	1.3 About this manual
	1.4 About Ibex

	2 Installation
	2.1 Ibex for .Net 6, .Net 7, .Net 8, .Net 9, .Net 10
	2.1.1 Ibex.PDF.Creator
	2.1.2 Ibex.CommandLine

	2.2 Installation for .Net Framework 4.8
	2.2.1 Creating a Project
	2.2.2 Adding the Ibex component
	2.2.3 Adding Code
	2.2.4 Testing

	3 Getting Started with Ibex
	3.1 Ibex command line program usage
	3.2 Error logging
	3.3 An example without XSLT translation
	3.4 An example with XSLT translation
	3.5 Required skills

	4 Introduction to XSL-FO
	4.1 Layout of an FO file
	4.1.1 Namespaces
	4.1.2 The root element
	4.1.3 The layout-master-set element
	4.1.4 The page-sequence element

	4.2 Adding a footer region
	4.3 Attribute processing
	4.4 Adding content to the footer
	4.5 Adding the page number to the footer
	4.6 Adding the total page count to the footer
	4.7 Adding text content
	4.8 Using borders and padding
	4.9 Creating lists
	4.10 Creating tables
	4.10.1 Setting table column widths

	5 Using Ibex
	5.1 Ibex command line program
	5.1.1 XSLT translation
	5.1.2 Logging from the command line
	5.1.3 Listing available fonts

	5.2 The Ibex API
	5.2.1 Generating to File
	5.2.2 Generating using streams
	5.2.3 Generating a PDF from XML and XSL
	5.2.4 Generate a PDF from XML and XSL with parameters

	6 Error Handling & Logging
	6.1 Error severity
	6.2 Logging to a file
	6.3 Logging to a stream
	6.4 Logging to multiple destinations

	7 Page Layout
	7.1 Using one layout for all pages
	7.2 Using different layouts for different pages
	7.2.1 Using different page masters for each page sequence
	7.2.2 Using page master alternatives

	8 Text Formatting
	8.1 Using the font attribute
	8.2 Using the font-family attribute
	8.3 Italic text
	8.4 Bold text
	8.5 Text size
	8.6 Underlining text
	8.7 Striking out text
	8.8 Horizontal alignment
	8.8.1 Justifying the last line of a paragraph

	8.9 Left and right margins
	8.10 Spacing between letters
	8.11 Spacing before and after words
	8.12 Forcing a line break
	8.13 Space at the start of a line
	8.14 Vertical alignment
	8.14.1 The effect of subscript and superscript text on line spacing
	8.14.2 The baseline
	8.14.3 Subscript and superscript

	8.15 Line stacking strategies
	8.16 Aligning images
	8.16.1 The before-edge baseline

	9 Fonts
	9.1 How Ibex uses fonts

	10 Floats
	10.1 How the float width is calculated

	11 Space Handling
	11.1 Linefeeds and carriage returns
	11.2 Default treatment of linefeeds and spaces
	11.3 Using linefeeds to break text
	11.4 Retaining spaces
	11.5 Non-breaking spaces

	12 Colors
	12.1 Text color
	12.2 Background color
	12.3 Available colors
	12.3.1 Predefined colors
	12.3.2 Hexadecimal RGB colors
	12.3.3 CMYK colors
	12.3.4 PDF/X color profiles

	13 Lists
	13.1 Bulleted lists

	14 Tables
	14.1 Cell padding
	14.2 Cell background color
	14.3 Cell background images
	14.4 Implicit and explicit rows
	14.5 Table columns
	14.6 Proportional column widths
	14.7 Spanning columns and rows
	14.8 Cell separation
	14.9 Table headers
	14.10 Table footers
	14.11 Behavior at page breaks
	14.11.1 Repeating headers
	14.11.2 Repeating footers
	14.11.3 Repeating table borders

	14.12 Table continuation markers
	14.13 Aligning columns at the decimal point

	15 Images
	15.1 Image basics
	15.2 Making an image fit a specified space
	15.3 Clipping
	15.4 Image size and alignment
	15.4.1 Leading

	15.5 Image resolution
	15.6 Image anti-aliasing
	15.7 Loading an image from memory
	15.8 Transparent Images
	15.8.1 Transparent GIF images
	15.8.2 Transparent PNG images
	15.8.3 Transparent images using masking
	15.8.4 Transparent Images using SVG

	15.9 Network credentials used in accessing images
	15.10 Multi-page TIFF image processing

	16 Scalable Vector Graphics (SVG) images
	16.1
	16.2 Namespaces
	16.3 Image size
	16.4 Summary of supported elements
	16.4.1 <svg>
	16.4.2 <g>
	16.4.3 <defs>
	16.4.4 <desc>
	16.4.5 <title>
	16.4.6 <symbol>
	16.4.7 <use>
	16.4.8 <image>
	16.4.9 <switch>
	16.4.10 <path>
	16.4.10.1 Path line join shapes

	16.4.11 <style>
	16.4.12 <rect>
	16.4.13 <circle>
	16.4.14 <ellipse>
	16.4.15 <line>
	16.4.15.1 Line end shapes
	16.4.15.2 Dashed lines

	16.4.16 <polyline>
	16.4.17 <polygon>
	16.4.18 <text>
	16.4.19 <tspan>
	16.4.20 <textpath>
	16.4.21 <pattern>

	16.5 Opacity
	16.6 Markers
	16.7 Linear gradients
	16.8 Radial gradients

	17 Absolute Positioning
	17.1 Positioning block-containers
	17.2 Positioning and sizing block containers

	18 Columns
	19 Bookmarks
	20 Configuration
	20.1 Fonts
	20.2 Line height
	20.3 Page size
	20.4 Include paths
	20.5 Images
	20.6 Border widths
	20.7 Layout
	20.8 Leaders

	21 Extensions
	21.1 Document security
	21.1.1 40 bit encryption security options
	21.1.2 128 bit encryption security options

	21.2 Standard document properties
	21.3 Custom Document Properties
	21.4 Image processing
	21.4.1 Image resolution
	21.4.2 Anti-aliasing
	21.4.3 Multi-page TIFF image processing

	21.5 Bookmarks
	21.6 Document base URL
	21.7 Ibex version
	21.8 PDF/X
	21.9 Viewer Preferences

	22 Accessiblity and PDF/UA
	22.1 Enabling PDF/UA Creation
	22.2 Headers
	22.3 Tables
	22.4 Lists
	22.5 Static Content
	22.6 Image Alt Tags
	22.7 WCAG Requirements
	22.7.1 PDF1: Applying text alternatives to images with the Alt entry in PDF documents
	22.7.2 PDF2: Creating bookmarks in PDF documents
	22.7.3 PDF3: Ensuring correct tab and reading order in PDF documents
	22.7.4 PDF4: Hiding decorative images with the Artifact tag in PDF documents
	22.7.5 PDF5: Indicating required form controls in PDF forms
	22.7.6 PDF6: Using table elements for table markup in PDF Documents
	22.7.7 PDF7: Performing OCR on a scanned PDF document to provide actual text
	22.7.8 PDF8: Providing definitions for abbreviations via an E entry for a structure element
	22.7.9 PDF9: Providing headings by marking content with heading tags in PDF documents
	22.7.10 PDF10: Providing labels for interactive form controls in PDF documents
	22.7.11 PDF11: Providing links and link text using the Link annotation and the /Link structure element in PDF documents
	22.7.12 PDF12: Providing name, role, value information for form fields in PDF documents
	22.7.13 PDF13: Providing replacement text using the /Alt entry for links in PDF documents
	22.7.14 PDF14: Providing running headers and footers in PDF documents
	22.7.15 PDF15: Providing submit buttons with the submit-form action in PDF forms
	22.7.16 PDF16: Setting the default language using the /Lang entry in the document catalog of a PDF document
	22.7.17 PDF17: Specifying consistent page numbering for PDF documents
	22.7.18 PDF18: Specifying the document title using the Title entry in the document information dictionary of a PDF document
	22.7.19 PDF19: Specifying the language for a passage or phrase with the Lang entry in PDF documents
	22.7.20 PDF20: Using Adobe Acrobat Pro's Table Editor to repair mistagged tables
	22.7.21 PDF21: Using List tags for lists in PDF documents
	22.7.22 PDF22: Indicating when user input falls outside the required format or values in PDF forms
	22.7.23 PDF23: Providing interactive form controls in PDF documents

	23 PDF/X
	23.1 Media box
	23.2 Bleed box
	23.3 Trim box
	23.4 Overprint

