Ibex PDF Creator

.NET Programmers Guide

For Ibex version 6.11.1.3

Table of Contents

1. INrOAUCTION oo 1
2. INSTAIALION .. 5
3. Getting Started With IDEX cooiiii e 9
4. Introduction t0 XSL-FO ... 13
B, USING TDBX et a e ————- 31
6. Error Handling & LOQQING ..vvveiiiiiiieic e 35
7. Page LaYOUL ..o 39
8. TEXt FOrMALtING ...oeieeiiiii e 49
0. FONES e 61
10, FIOAES i 63
11. Space HandliNg ..o 67
12, C0l0rS e 71
L3, LiStS oo aeaeas 75
LA, TAbIES e 79
15, IMAGES oo 93
16. Scalable Vector Graphics (SVG) Imagescccccccvvvvvviiiiiiieieeeeeeenn 105
17. ADSOIULE POSITIONING ...eviiiiiiiiiiiiiiiieee e 119
18. COIUMNS e 123
19. BOOKMAIKS .ttt e e 125
Y2 IR 0] o110 11 =11 (] o NP 127
21, EXIENSIONS ..eiiiiiiieiiiiie ettt e e 131
22. Accessiblity and PDF/UA ... a e 139
23 PDF/X i 151

©2002-2026 Visual Programming Limited. All rights reserved.
NOTICE: All information contained herein is the property of Visual Programming Limited.

No part of this publication (whether in hardcopy or electronic form) may be reproduced or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written consent of the publisher.

PostScript is a registered trademark of Adobe Systems Incorporated. Adobe, the Adobe logo,
Acrobat, the Acrobat logo, Adobe Garamond, Aldus, Distiller, Extreme, FrameMaker,
lllustrator, InDesign, Minion, Myriad, PageMaker, Photoshop, Poetica, and PostScript are
trademarks of Adobe Systems Incorporated. Apple, Mac, Macintosh, QuickDraw, and
TrueType are trademarks of Apple Computer, Inc., registered in the United States and other
countries. ITC Zapf Dingbats is a registered trademark of International Typeface Corporation.
Helvetica and Times are registered trademarks of Linotype-Hell AG and/or its subsidiaries.
Microsoft and Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Times New Roman is a trademark of
The Monotype Corporation registered in the U.S. Patent and Trademark Office and may be
registered in certain other jurisdictions. Unicode is a registered trademark of Unicode, Inc. All
other trademarks are the property of their respective owners.

This publication and the information herein are furnished AS IS, are subject to change
without notice, and should not be construed as a commitment by Visual Programming
Limited. Visual Programming Limited assumes no responsibility or liability for any errors or
inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to
this publication, and expressly disclaims any and all warranties of merchantability, fitness for
particular purposes, and noninfringement of third-party rights.

1.1

Figure 1-1:
Simple XML

Chapter 1

Introduction

This manual describes the functionality and use of the Ibex PDF Creator. Ibex is a PDF
creation component which can be used from the command line or, more usually,
integrated into a larger application. It ships as a .Net assembly so it can be used both in
stand-alone applications and in server-based applications using ASP and ASP.Net.

This chapter provides an overview of how Ibex works and the process involved in
creating PDF files using Ibex.

The PDF creation process

Ibex creates PDF files which contain data from your application. You provide Ibex with
your data in XML format and Ibex creates a PDF file containing that data. The format of
the PDF file is specified using an XSL stylesheet which defines the layout of the
document using the elements from the XSL Formatting Objects standard.

The XML you provide to Ibex can come from any source. Typically, it is extracted from a
database or generated dynamically for each document.

The formatting objects (FO) standard defines elements such as table, row and cell which
can be used to lay out your data on a page. It also defines objects for describing the
overall shape and layout of the page, including parameters such as page size, number of
columns and regions such as headers and footers where content will be placed on the
page.

The process of creating a document in FO format is carried out using an XSLT stylesheet.
The stylesheet transforms your XML data into standard FO syntax. Ibex then reads that
XSL-FO and creates the PDF file. The actual execution of the XSLT translation can be
done either by Ibex, which uses the .Net framework XSL translation objects, or
externally to Ibex using any XSLT engine.

Figure 1-1 shows some XML data for creating a page which says "Hello world". The
corresponding formatting objects from which the PDF is created are shown in Figure 1-2.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<expressi on>hel | o wor| d<expr essi on>

Introduction 1

https://www.w3.org/TR/xsl/
https://www.w3.org/TR/xsl/
https://www.w3.org/TR/xsl/
https://www.w3.org/TR/xsl/

Figure 1-2:

Example formatting
objects for hello
world

1.2

Ibex PDF Creator Developers Guide

<root xm ns="http://ww.w3. org/ 1999/ XSL/ For mat " >
<l ayout - mast er - set >

<si npl e- page- nast er mast er-nane="1 ayout" page-w dt h="8.5i n" page- hei ght ="8i n">
<r egi on- body regi on- nane="body" margi n="2. 5cni'/>
</ si npl e- page- mast er >

</l ayout - nast er - set >

<page- sequence naster-reference="1ayout">

<flow f| ow name="body" >

<bl ock>Hel | o wor| d</ bl ock>

</fl ow>

</ page- sequence>

</root >

The process of getting from your data to the formatting objects is carried out using the
XSLT stylesheet which you provide.

This approach to PDF creation has a number of advantages:

the content and presentation are separated. The format of the PDF file is defined by
the XSLT stylesheet which can be created and maintained externally to the
application. Changing the stylesheet to alter the report layout does not require
rebuilding your application;

formatting elements such as report headers and footers can be maintained in a
separate stylesheet which is included at runtime into many different reports;

the formatting objects standard defines a powerful set of objects for creating page
content. It supports single-column and multi-column pages, bookmarks, indexing,
page headers and footers, complex page numbering, tables with optionally repeating
headers and footers and many other features;

formatting objects is a high-level approach which makes changing report layouts
simple. For example to change the number of columns on a multi-column page you
just need to change the column-count attribute on a single element. To do this using a
lower level programmatic APl is much more complex.

Terminology

Ibex uses the FO standard which defines formatting objects such as table and table-cell.
FO makes a distinction between two types of objects:

block-level objects broadly speaking these are objects which are formatted

vertically down the page. Block level objects are fo:block,
fo:block-container, fo:table, fo:table-and-caption, and
fo:list-block.

inline-level objects these are objects whose content is placed on lines within an

fo:block object. Commonly used inline level objects are

2

Introduction

1.3

1.4

Ibex PDF Creator Developers Guide

fo:external-graphic, fo:inline, fo:leader, fo:page-number,
fo:page-number-citation and fo:basic-link.

About this manual

This manual is split into two main sections. The first covers an introduction to the use of
formatting objects and an overview of various formatting objects such as tables and
lists. The second is a reference section listing all the available objects and attributes with
many examples of their usage.

This manual was produced with the .Net version of Ibex, release 6.11.1.3 .

About Ibex

Ibex is developed entirely in C# and requires the Microsoft dotnet runtime to be
installed. .Net Framework 4.8 and .Net 6.0 - 10.0 are supported. All operating systems
which support dotnet are supported by Ibex.

Introduction 3

4

Introduction

2.1

211

2.1.2

Chapter 2

Installation

Ibex for .Net 6, .Net 7, .Net 8, .Net 9, .Net 10

The latest version of Ibex works on .Net 6, 7, 8 and 9. This version works on Windows
and Linux operating systems.

Ibex is installed as from nuget.org as two separate components, the PDF creation
library, and the command line interface.

Ibex.PDF.Creator

The Ibex.PDF.Creator package contains the library which you will link to your own
application. This can be downloaded either using the "Manage Nuget Packages" menu
option from within Visual Studio or using the "dotnet add package" command on the
command line.

Ibex.CommandLine

The Ibex.CommandLine package is a console application to create PDF files from the
command line, for use during testing and development.

The Ibex.CommandLine package is a [dotnet tool]. This is installed from a command
shell like so:

dotnet tool install -g |bex.ComrandLi ne

An existing installation can be updated using this command:

dot net tool update -g |bex. CommandLi ne

An existing installation can be uninstalled using this command:

dotnet tool uninstall --global |bex.ComrandLi ne

The Ibex.CommandLine tool, when it is installed as a dotnet global tool, is accessed
using the command "ibex". So for example if we had a file called 'test.fo' this command
would created a PDF file from it:

ibex test.fo test.pdf

Installation 5

https://www.nuget.org/packages/Ibex.PDF.Creator
https://www.nuget.org/packages/Ibex.CommandLine
https://docs.microsoft.com/nl-nl/dotnet/core/tools/global-tools
https://docs.microsoft.com/nl-nl/dotnet/core/tools/global-tools

2.2

221

2.2.2

Ibex PDF Creator Developers Guide

Installation for .Net Framework 4.8

The latest version of Ibex works on .Net Framework 4.8. This version works on Windows
operating systems.

.Net Framework 4.8 does not support the "dotnet tool" command line approach used
for .Net 6 and above. Instead here we show how to add the Ibex component to a
program using Visual Studio 2022 or 2026.

Creating a Project

Open Visual Studio 2022 or 2026, use the File > New > Project menu to open the project
creation dialog and select these options to create a .Net Framework based application:

Create a new project

Recent project templates

Press "Next" and then name the project and specify its location and make sure to
choose ".Net Framework 4.8" as the framework.

Configure your new project

Console App (NET Framework) ¢ Wind

Press "Create" to create the project. You should see this window showing the project
files in the Solution Explorer window (which might be on the left or the right side of the
screen) and the contents of the file Progam.cs.

Adding the Ibex component

Right-click the project name (in this case "IbexTest") and select "Manage Nuget
Packages..."

6 Installation

Ibex PDF Creator Developers Guide

Click on the "Browse" tab at the top of the window and type "ibex pdf creator" in the
search bar and press enter. This should show the Ibex.PDF.Creator package, click this
and the click the Install button on the far right:

After a few seconds and possibly some confirm dialog boxes, if you click on the
"Installed" tab you should see something like this, showing which components have
been added to the project:

If you want you can update some of these packages to the latest versions. **Do not**
update the version of SixLabors.ImageSharp to 3.1.4, this version only works with .Net 6
application it will not work with .Net Framework 4.8 applications.

2.2.3 Adding Code

Edit the file Program.cs and replace all its code with this code:

Installation 7

Ibex PDF Creator Developers Guide

usi ng i bex4;
using System | O
usi ng System Text;

public class test

{

static void Main(string[] args)
{
string FO = "<fo:root xm ns:fo=\"http://ww.w3. org/ 1999/ XSL/ For mat\ " >"
+ "<fo:layout-naster-set>"
+ " <fo:sinpl e-page- mast er mast er - nane=\"page\" margi n=\"36pt\"
page- hei ght -\ "11in\" page-w dt h=\"8in\">"
' <f o:regi on-body nargin-top=\"78pt\"/>"
+ " </fo:sinpl e-page- nast er >"
+ "</fo:layout - mast er - set >"
+ "<fo: page-sequence naster-reference=\"page\">"
+ " <fo:flow font-famly=\"Arial\" font-size=\"11pt\"
f 1 ow nane=\"xsl - r egi on- body\ " >"
+ " <f o: bl ock border=\"1pt solid green\">Hell o Wrl d</fo: bl ock>"
+ " </fo:fl ow"
+ "</ fo: page- sequence>"
+ "</fo:root>";

byte[] byteArray = Encodi ng. UTF8. Get Byt es(FO);

MenoryStream i nput Stream = new MenoryStrean(byt eArray);

i nput St ream Seek(0, SeekOri gin. Begin);

FODocunent gen = new FODocunent () ;

using (FileStream pdf Stream = new Fil eStrean("test.pdf", FileMbde. Create,
Fi | eAccess. Wite))

gen. gener at e(i nput Stream pdf Strean);

}

Compile this program.

2.2.4 Testing

You should now be able to run the program and create the file "test.pdf". Depending on
the project setup this will appear in the current directory which might be for example in
bin\Debug.

8 Installation

3.1

3.2

3.3

Chapter 3

Getting Started with Ibex

Although primarily intended for use as a part of a larger application, the Ibex installation
includes command line programs which creates PDF files from XML, XSLT and XSL-FO
files. We will use these programs to demonstrate the basics of PDF creation with Ibex.

Throughout this manual an XML file which uses the XSL formatting objects vocabulary is
referred to as an FO file or just the FO.

The command line syntax for all versions is the same. In these examples we use ibex.exe.

Ibex command line program usage

To create a PDF file from a FO file specify the names of the FO and PDF files on the
command line. For example to create hello.pdf from hello.fo you do this:

i bex hello.fo hello. pdf

If the names of the input and output files are the same (ignoring the extensions) you can
abbreviate this to:

i bex hello.fo

and if the file extension of the input file is "fo" or "xml" you can abbreviate even further
to:

i bex hello

Error logging

Any informational or error messages will be logged to the console. To send any error
messages to a file as well, use the -logfile option. For example, to log errors to the file
ibex.log the command becomes:

i bex -logfile ibex.log hello.fo hello. pdf

An example without XSLT translation

The Ibex command line program will create a PDF file from either (a) an FO file or (b) an
XML file with an XSLT stylesheet. This section shows how to create a PDF file from an FO
file.

Getting Started with Ibex 9

Ibex PDF Creator Developers Guide

This example uses the FO file hello.fo shown in Figure 3-1.

Figure 3-1: <?xm versi on="1.0" encodi ng="UTF- 8" ?>
Hello World FO <root xm ns="http://www. w3. or g/ 1999/ XSL/ For mat " >

<l ayout - mast er - set >
<si npl e- page- nast er mast er - nane="page" >
<regi on- body margi n="2.5cn' regi on- name="body"/ >
</ si npl e- page- mast er >
</l ayout - nast er - set >

<page- sequence master-reference="page">
<flow fl ow name="body" >
<bl ock>Hel o Wor | d</ bl ock>
</fl ow>
</ page- sequence>
</ root >

Each of the elements and attributes used in the file is explained later in the manual. For
now we just want to get started with using the Ibex command line program.

Using the command
i bex hello

creates the file hello.pdf containing the text "Hello World".

3.4 An example with XSLT translation

The Ibex command line program will create a PDF file from either (a) an FO file or (b) an
XML file with an XSLT stylesheet. This section shows how to create a PDF file from an
XML data file with an XSLT stylesheet.

Using Ibex without having Ibex do the XSLT transformation to create the FO is useful if
you have created the FO using another tool or if you just want to manually change some
FO to experiment with layout.

In practice XSLT is almost always part of the PDF creation process because XSL-FO lacks
some simple features such as being able to sequentially number headings. The designers
of XSL-FO presumed that XSLT would be used and so did not duplicate features already
in XSLT.

Ibex gives you the flexibility of having Ibex do the XSLT translation or having some other
tool do it. Internally Ibex uses the XSLT translation classes provided by .NET.

In this example we will translate some XML with an XSLT stylesheet and produce a PDF
from the result of the translation.

We have some weather forecast data in the file weather.xml. This file contains the XML
shown in Figure 3-2.

Figure 3-2: <?xnl version="1.0" encodi ng="UTF- 8" ?>

Weather Forecast <f or ecast > .
<city name="Wel | ington" tenp="20"/>

Data </ f orecast >

10 Getting Started with Ibex

http://www.xmlpdf.com/manualfiles/hello.fo
http://www.xmlpdf.com/manualfiles/hello.pdf
http://www.xmlpdf.com/manualfiles/weather.xml

Ibex PDF Creator Developers Guide

We also have an XSLT stylesheet weather.xsl which contains the XSL shown in Figure 3-3.

Figure 3-3: <?xm versi on="1.0" encodi ng="utf-8"?>
<xsl:styl esheet version="1.0"
Weather Forecast xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni'
Stylesheet xn ns: fo="http://ww. w3. or g/ 1999/ XSL/ For nat "
xm ns: i bex="http://ww:. xm pdf . conf 2003/ i bex/ For nat " >

<xsl:strip-space el ements="*"/>
<xsl:tenplate match="forecast">
<root xm ns="http://ww.w3. org/ 1999/ XSL/ For mat " >

<l ayout - mast er - set >
<si npl e- page- nast er nast er - nane="page- | ayout " >
<regi on- body margi n="2. 5cn' regi on- name="body"/ >
</ si npl e- page- mast er >
</l ayout - nast er - set >

<page- sequence master-reference="page-|ayout">
<flow fl ow name="body" >
<xsl :apply-tenpl ates select="city"/>
</fl ow>
</ page- sequence>

</root >
</ xsl : tenpl at e>
<xsl:tenplate match="city">
<f o: bl ock>
<xsl : val ue- of sel ect =" @ane"/>
<xsl :val ue-of select="@enp"/>
</ fo: bl ock>
</ xsl : tenpl at e>

</ xsl : styl esheet >

This template outputs the root, layout-master-set and page-sequence elements. Then
for each city record in the data outputs a block element using the template shown in

Figure 3-4.

Figure 3-4: <xsl : tenpl ate match="city">

<bl ock>
weather-data-xs| <xsl : val ue- of sel ect =" @ane"/ >
subset
<xsl :val ue-of select="@enp"/>
</ bl ock>

</ xsl:tenpl at e>

We can translate and format this example using the command:
i bex -xsl weather.xsl weather.xm weather. pdf

The result of this translation is the file weather.pdf

3.5 Required skills

To use Ibex you need know how to edit XSL stylesheets. Some familiarity with XSLT is
required, although in depth knowledge is not. The Ibex website contains examples of
using XSLT for common document related functions such as creating a table of contents.

Getting Started with Ibex 11

http://www.xmlpdf.com/manualfiles/weather.xsl
http://www.xmlpdf.com/manualfiles/weather.pdf

Ibex PDF Creator Developers Guide

Familiarity with XSL-FO is not required. This manual contains enough information to
enable you to produce complex documents using Ibex.

12 Getting Started with Ibex

Chapter 4

Introduction to XSL-FO

This chapter provides an overview of formatting objects and provides some suggestions
on how to create PDF documents from XML files. We also look at the techniques for
using XSLT transformation to create FO files.

4.1 Layout of an FO file

A very simple FO file is shown in Figure 4-1:

Figure 4-1: <?xm versi on='1.0' encodi ng=' UTF-8' ?>
SnuﬂeFOfHe<r°°t xm ns="http://ww. w3. org/ 1999/ XSL/ For mat " >

<l ayout - mast er - set >
<si npl e- page- nast er nast er - nane="si npl e" >
<regi on- body margi n="2.5cni' regi on- nanme="body"
backgr ound- col or =" #eeeeee' / >
</ si npl e- page- nast er >
</l ayout - mast er - set >

<page- sequence master-reference="sinple">
<fl ow fl ow nanme="body" >
<bl ock>Hel | o Wor| d</ bl ock>
</ fl ow>
</ page- sequence>

</root >

This file is logically in three parts, namely the root, layout-master-set and page-sequence
parts. All FO files share this structure.

4.1.1 Namespaces

The examples used in this manual follow the style shown in Figure 4-1, where the XSL-FO
namespace is set (on the root element) as the default namespace for the file.
Namespace prefixes are not used for the FO elements such as block. Figure 4-2 shows
the same FO as Figure 4-1 but without the default namespace. Each element has the
"fo:" namespace prefix. The files shown in Figure 4-1 and Figure 4-2 both create the same
output and are treated equally by Ibex. Using namespaces is a matter of preference, it
does not effect performance.

Introduction to XSL-FO 13

Ibex PDF Creator Developers Guide

Figure 4-2: <?xm version="1.0" encodi ng=' UTF-8' ?>
Simple XML using the <fo:root xmns:fo="http://ww. w3. org/ 1999/ XSL/ For mat " >

foprefix <fo:layout-naster-set>
<f o: si npl e- page- mast er mast er - nane="si npl e" >
<fo:regi on-body margi n="2.5cni" regi on- nanme="body"
backgr ound- col or =' #eeeeee' / >
</ fo: si npl e- page- mast er >
</ fo:layout - mast er - set >

<f 0: page- sequence nmaster-reference="sinple">
<fo:flow fl ow nane="body" >
<f o: bl ock>Hel | o Wor| d</ bl ock>
</fo:fl ow>
</ f o: page- sequence>

</ fo:root>

4.1.2 The root element

The root element shown in Figure 4-3 contains the whole content of the file and
establishes the XSL-FO namespace as the default namespace. This element is the same
for all FO files.

Figure 4-3: <root xm ns="htt p://ww. w3. or g/ 1999/ XSL/ For mat " >
The root element
Additional namespaces can be added to the xml element as shown in Figure 4-4.

Figure 4-4: <root xm ns="http://wawv. w3. or g/ 1999/ XSL/ For nat "
; xm ns: i bex="http://ww. xm pdf.com 2003/ i bex/ For mat "
The root elemen't.W|th xm ns: svg="xm ns="htt p: // www. wW3. or g/ 2000/ svg"
additional >

namespaces

4.1.3 The layout-master-set element

The layout-master-set element show in Figure 4-5 defines the shape and layout of pages
in the document. Within the layout-master-set we have a simple-page-master element
which in turn contains the region-body element.

The simple-page-master defines the layout of one type of page and is uniquely identified
by its master-name attribute. The region-body element defines an area of the page
where content will be placed. A page can have more than one region so we give the
region a unique name "body" using the region-name attribute. This value is used with
flow elements to specify which content goes into which region on the page.

Figure 4-5: <| ayout - nast er - set >
The master-layout <si npl e-page- mast er mast er - nane="si npl e" >
y <regi on- body margi n="2. 5cni' regi on- nane="body"
element backgr ound- col or =" #eeeeee"/ >
</ si npl e- page- nast er >
</l ayout - mast er - set >

A FO file contains one or more simple-page-master elements, each with a unique
master-name. In this simple example we have only one. Each simple-page-master
element creates a formatting object known as a page master.

14 Introduction to XSL-FO

41.4

Figure 4-6:
The page-sequence
element

Figure 4-7:
Matching
master-name and
master-reference

Ibex PDF Creator Developers Guide

An example of a more complex document is the Ibex manual. Each chapter begins with a
page which has no header. This is followed by a page which has left-aligned footer, then
a page with a right-aligned footer. Each of the three possible page layouts is defined by a
different simple-page-master element.

The page-sequence element

The page-sequence element shown in Figure 4-6 defines a sequence of pages that will
appear in the PDF document. The master-reference attribute is used to tie the content of
the page-sequence to a particular page layout, in this case one defined previously using a
simple-page-master. When Ibex finds a page-sequence element it looks at the list of
known simple-page-master and page-sequence-master elements (we have no
page-sequence-master elements in this example) and finds one with a master-name
attribute which equals the master-reference attribute on the page-sequence. If Ibex
does not find a matching page master the FO file is invalid and Ibex will throw an
exception.

<page- sequence naster-reference="sinple">
<fl ow fl ow nanme="body" >
<bl ock>Hel o Wor | d</ bl ock>
</fl ow>
</ page- sequence>

Within the page-sequence element we have a flow element. This holds the content
which will appear on one or more pages. A page can have multiple regions. To associate
content with a region we use the flow-name attribute on the flow element. In order for
the content contained in the flow to appear on the page, the flow-name of the flow
should match a region-name of one of the regions (in this example the region-body) on
the page.

If the flow-name of the flow does not match a region-name of one of the regions on the
page the content is not displayed on that page. This is not an error. It is a useful feature
and we show how to use it later in this chapter.

Looking at the FO in Figure 4-7, the underlined names must match each other, and the
names in italics should match if you want the content to appear.

<l ayout - mast er - set >
<si npl e- page- nast er nast er - nane="si npl e" >
<r egi on-body margi n="2.5cn' regi on- nane="body"
backgr ound- col or =" #eeeeee' / >
</ si npl e- page- nast er >
</l ayout - nast er - set >

<page- sequence naster-reference="sinple">
<fl ow fl ow nanme="body" >
<bl ock>Hel o Wor | d</ bl ock>
</ fl ow>
</ page- sequence>

Within the flow element we can have one or more "block level" elements. These are
elements such as list, block and table which define the content to appear on the page. In
this example we have a single block element containing the text "Hello World".

Introduction to XSL-FO 15

Ibex PDF Creator Developers Guide

This produces a page like the one shown in Figure 4-8. The region created by the
region-body element has a shaded background so you can see how large it is.

Figure 4-8:

A basic page with a
region-body and some
text

Hello World

4.2 Adding a footer region

In our example so far all the text contained in the flow element goes into the body
region in the center of the page. To add a page footer we need to define a new region
on the page and then define some new content to go into that region.

We define a footer region by adding a region-after element into the existing
simple-page-master as shown in Figure 4-9.

Figure 4-9: <| ayout - mast er - set >
Simple page master <si npl e- page- mast er mast er - nanme="si npl e" >

with footer region < egi on-after extent='1lcn region-name="footer"
backgr ound- col or =" #dddddd' / >

</ si npl e- page- mast er >
</l ayout - nast er - set >

The region-after element defines an area on the page which extends the full width of the
page. If we had side regions (region-start and region-end) this might change, but in this
example we have no side regions.

The height of the region created by the region-after element is defined by the extent
attribute. In this example we have extent="1cm", so the region will be 1cm high and end
at the bottom of the page.

16 Introduction to XSL-FO

Ibex PDF Creator Developers Guide

Even without any content the footer region is still rendered on the page. Our page now
looks like the one in Figure 4-10.

Figure 4-10:
A basic page with a Hello World
footer region

In its current position on the page the footer region will not print on most printers
because they do not print right to the edge of the paper. We can define a margin around
the whole page by setting the margin attribute on the simple-page-master element of
the page-sequence as shown in Figure 4-11.

Figure 4-11: <l ayout - mast er - set >
: <si npl e- page- nast er nast er - nane="si npl e"
Slrr.1ple pagfa master Mmar gi n="2. Scnf >
with margin added <regi on- body margi n="2. 5cni' regi on- nanme="body"

backgr ound- col or =" #eeeeee"/ >

<region-after extent="1cni' regi on-name="footer"
backgr ound- col or =" #dddddd"/ >
</ si npl e- page- nast er >
</l ayout - nast er - set >

The area inside the margins of the simple-page-master is called the "content area". The
area covered by the regions (defined by the region-body and region-end) is measured
from the inside of the page's content area, so when we add margins to the
simple-page-master we reduce the size of the regions correspondingly.

Introduction to XSL-FO 17

Ibex PDF Creator Developers Guide

Our page now appears as shown in Figure 4-12.

Figure 4-12:

After adding margins
to the
simple-page-master Hello World

Now that we have some space on the sides of the body region we can remove the side
margins from the body by changing the definition from that shown in Figure 4-13 to the
one shown in Figure 4-14, resulting in the page layout shown in Figure 4-15.

Figure 4-13: <r egi on- body mar gi n="2. 5cnf regi on- name="body"
Body with side backgr ound- col or =" #eeeeee"/ >

margins

Figure 4-14: <r egi on- body mar gi n-t op="2. 5cni' nargi n- bott om=" 2. 5cni’
Body without side regi on- nane="body" background- col or =" #eeeeee"/ >

margins

18 Introduction to XSL-FO

Ibex PDF Creator Developers Guide

Figure 4-15:

After removing the

left and right margins
from the region-body Hello World

The last thing we need to do to get a working page layout is to make the footer region
narrower by adding side regions. The left side region is created with a region-start
element and the right side with a region-end element as in Figure 4-16. We can also
specify the bottom-margin attribute of the body region so that it ends just where the
footer starts, by setting margin-bottom="1cm" on the region-body element.

Figure 4-16: <| ayout - nast er - set >
side regions <si npl e- page- Tast er master-nanme="sinple"
mar gi n=' 2. 5cnmi >
<regi on-body margi n="2.5cn' margi n-bottom' 1cm
regi on- name="body"
backgr ound- col or =" #eeeeee' / >
<region-after extent='"l1cm region-name="footer"
backgr ound- col or =" #dddddd' / >
<region-start extent='2.5cm />
<regi on-end extent='2.5cm />
</ si npl e- page- nast er >
</ | ayout - nast er - set >

By default the side regions take precedence over the top and bottom regions so the top
and bottom regions become narrower. This gives us the page layout shown in
Figure 4-17, to which we can start adding some content.

Introduction to XSL-FO 19

Ibex PDF Creator

Developers Guide

Figure 4-17:

With side regions to
reduce the width of
the footer

Hello World

4.3 Attribute processing

The FO above also illustrates one of the ways in which XSL-FO handles attributes. We can
specify a shorthand attribute such as "margin", which has the effect of setting the
specific values margin-left, margin-right, margin-top and margin-bottom, and then
override just the specific value we want (by setting margin-bottom="1cm"). The order in
which the attributes are specified has no effect. A more specific setting will always
override a more general one. So the two examples in Figure 4-18 and Figure 4-19 produce

the same result.

Figure 4-18: <| ayout - nast er - set >

horth <si npl e-page- master naster- name="si _rrpl e">
Shorthand and <regi on- body nargi n="2.5cn' nargin-bottom"lcnt' >

specific attributes </ si npl e- page- nast er >
</l ayout - nast er - set >

Figure 4-19: <l ayout - mast er - set >

<si npl e- page- mast er mast er - nane="si npl e" >
Shorthand and <regi on- body margi n-bottom="1cn' margi n="2. 5cni' >

specific attributes </ sji npl e- page- nast er >
</l ayout - mast er - set >

4.4 Adding content to the footer

While content is added to the body of the page using the flow element, content is added
to other regions using the static-content element. The "static" part of the static-content
name refers to the fact that the content defined in this element stays within the region
specified on this page. It does not flow from one page to the next. If the content

exceeds the size of the region it will not flow to the next page.

20 Introduction to XSL-FO

Figure 4-20:
Adding a
static-content
element

Figure 4-21:
FO with static-content

Ibex PDF Creator Developers Guide

The content of the static-content is repeated on every page which has a region with a
matching flow-name (such as "footer"), and is typically different on every page as the
page number changes.

To insert a simple footer with the words "XSL-FO Example" we add a static-content
element as shown in Figure 4-20.

<?xm version='1.0" encodi ng=' UTF- 8" ?>
<root xm ns="http://ww.w3. org/ 1999/ XSL/ For mat " >
<l ayout - mast er - set >
<si npl e- page- nast er mast er - nane="si npl e"

mar gi n=' 2. 5cni >
<r egi on- body margi n="2.5cn' margi n-botton lcm
regi on- nane="body" background- col or =' #eeeeee' / >
<region-after extent='1lcm region-nane="footer"
backgr ound- col or =" #dddddd' / >
<region-start extent='2. 5cm />
<regi on-end extent='2.5cm />
</ si npl e- page- nast er >
</l ayout - nast er - set >
<page- sequence naster-reference="sinple">
<static-content flow nane="footer">
<bl ock text-align='center'>
XSL- FO Exanpl e</ bl ock>
</ static-content>
<flow fl ow name="body" >
<bl ock>Hel | o Wor| d</ bl ock>
</fl ow>
</ page- sequence>
</ root >

Note that the order of the static-content and flow elements is important. All
static-content elements must come before any flow elements.

This FO produces the page shown in Figure 4-21.

Hello World

XSL-FO Example

Note that the flow-name of the static-content element and the region-name of the
region-after element must match for the content to appear. This feature makes it

Introduction to XSL-FO 21

4.5

Figure 4-22:
Adding a page
number

Ibex PDF Creator Developers Guide

possible to have many static-content elements within the same page-sequence, and only
those which match regions in the current simple-page-master will be rendered.

The Ibex manual has three different page layouts defined with three different
simple-page-master elements. Each simple-page-master has a footer region with a
different region-name. The main flow element contains three different static-content
elements all containing footers. Only the footer whose flow-name matches the
region-name for the currently active simple-page-master will be rendered.

Adding the page number to the footer

To insert the current page number into the document use the page-number element
inside the static-content element as shown in Figure 4-22.

<?xm version='"1.0" encodi ng=' UTF-8' ?>
<root xm ns="http://ww.w3. org/ 1999/ XSL/ For mat " >
<l ayout - mast er - set >
<si npl e- page- mast er mast er - name="si npl e"
mar gi n=" 2. 5cm >
<r egi on- body margi n="2.5cn' margi n-bottom" lcm
regi on- nane="body" background- col or =' #eeeeee' / >
<region-after extent='"l1cm region-name="footer"
backgr ound- col or =" #dddddd' / >
<region-start extent='2. 5cm/>
<regi on-end extent='2.5cm />
</ si npl e- page- nast er >
</l ayout - mast er - set >
<page- sequence naster-reference="sinple">
<static-content flow nane="footer">
<bl ock text-align='center'>
XSL- FO Exanpl e, page <page- nunber/>
</ bl ock>
</static-content>
<flow fl ow name="body" >
<bl ock>Hel o Wor | d</ bl ock>
</fl ow>
</ page- sequence>
</ root >

This FO produces the page shown in Figure 4-23.

22 Introduction to XSL-FO

Ibex PDF Creator Developers Guide

Figure 4-23:
Page with page
number

Hello World

XSL-FO Example, page 1

4.6 Adding the total page count to the footer

Adding the total page count (so we can have "page 3 of 5") is a two step process, based
on the use of the "id" attribute which uniquely identifies an FO element. We place a
block on the last page with the id of "last-page", and then we use the
page-number-citation element to get the number of the page on which that block appears
as our total number of pages.

Typically the block with the id of "last-page" is empty so a new page is not created at the
end of the document.

The FO for the last block in the document is shown in Figure 4-24, and the FO to retrieve
the last page number and put it in the footer is shown in Figure 4-25.

Figure 4-24: <bl ock i d="1I ast - page"/ >
Block with id for last
page
Figure 4-25: <page- nunber-ci tation ref-id="1ast-page"/>
FO to retrieve the
page number of the You can see how the id and ref-id values match. This is how Ibex associates the two

identified block elements and knows from which block to retrieve the page number.

Introduction to XSL-FO 23

Ibex PDF Creator

Developers Guide

So bringing all these elements together we have the FO shown in Figure 4-26.

Figure 4-26: <?xml version='1.0" encodi ng=' UTF-8' ?>
Complete FO to <root xm ns="http://ww.w3. org/ 1999/ XSL/ For mat " >
. <l ayout - nast er - set >
display total page <si npl e- page- mast er nast er - nane="si npl e"
count mar gi n="2. 5cni >
<r egi on- body margi n="2.5cn' margi n-bottom" lcm
regi on- nane="body" background- col or =' #eeeeee' / >
<region-after extent='"l1cm region-name="footer"
backgr ound- col or =" #dddddd' / >
<region-start extent='2. 5cm/>
<regi on-end extent='2. 5cm />
</ si npl e- page- nmast er >
</l ayout - mast er - set >
<page- sequence naster-reference="sinple">
<static-content flow nane="footer">
<bl ock text-align='center'>
XSL- FO Exanpl e, page <page- nunber/>
of <page-nunber-citation ref-id='1last-page' />
</ bl ock>
</static-content>
<fl ow fl ow nanme="body" >
<bl ock>Hel | o Wor| d</ bl ock>
<bl ock id='Iast-page'/>
</ fl ow>
</ page- sequence>
</root >

This FO produces the page shown in Figure 4-27.

Figure 4-27:

Page with page
number and total
page count Hello World

XSL-FO Example. page 1 of 1

4.7 Adding text content

Text is added to the body region of the page by using the block element. A block
element can contain any amount of text and has attributes which define how the text
will appear. These attributes are described in more detail later in the manual.

24 Introduction to XSL-FO

Ibex PDF Creator Developers Guide

A block can contain text as shown in Figure 4-28.

Figure 4-28: <f | ow f | ow nane="body" >
Text in a block <bl ock>Hel | o Wor | d</ bl ock>
</ flow>

A block element can also contain other block elements which in turn contain text or
more nested elements. Figure 4-29 shows a block which contains another block with a
different font, set using the font attribute.

Figure 4-29: <f| ow f | ow name="body" >

<bl ock>
Nested blocks Hel 1o Verl d

<bl ock font-size="16pt">
this is a nested bl ock
</ bl ock>
</ bl ock>
</ fl ow>

There is no limit to the nesting of block elements.

4.8 Using borders and padding

Many FO elements can have a border around the area they create on the page. If the
border around an element is the same on all four sides then it can be defined with a
single use of the border attribute. The space between a border and the content of the
block (in this case the text) is controlled using the padding attribute. Figure 4-30 shows
FO for a block with border and padding.

Figure 4-30: <f| ow f | ow name="body" >
Block with border and <bl ock background- col or =" #eeeeee' >
. <bl ock>
padding Hel lo Wrld
</ bl ock>
<bl ock border="1pt solid red" padding="3pt'>
Hello World
</ bl ock>
</ bl ock>
</ fl ow>

This example has two block elements nested inside an outer element, with a background
color set on the outer element to highlight the area created by the outer block. The
block created from this FO is shown in Figure 4-31.
Figure 4-31:
Default indentation Hel 1 0 Verld

of nested blockg Hel o Vrld

Ibex positions the content of the block (in this case the text) relative to the edge of the
region. After positioning the content, the padding and borders are positioned relative to
the position of the content. This places the padding and borders outside the content
area of the block. The contents of the block are not indented, rather the padding and
borders extend outside the block. This is the default behavior of XSL-FO formatters.

Introduction to XSL-FO 25

Ibex PDF Creator Developers Guide

If you prefer Cascading Style Sheets (CSS) compatible behavior where adding a border
to a block indents its content, you can specify the left-margin and right-margin attributes
to force this to happen. Even if the left-margin and right-margin values are zero, CSS
type indentation will still occur. The XML for this is shown in Figure 4-32 and the resulting
output is shown in Figure 4-33.

Figure 4-32: <f | ow f| ow name="body" >
Block with margins <bl ock background- col or =' #eeeeee' >
o <bl ock>
specified Hello Werld
</ bl ock>
<bl ock border='"1pt solid red padding='"3pt' margin-left="0" margin-right="0">
Hello World
</ bl ock>
</ bl ock>
</ fl ow>

Figure 4-33:
Default indentation Hel 1o Wrld
of nested blocks | Hello Wrld

4.9 Creating lists

A list is content divided into two columns. Each item in the list is in two parts, called the
label and the body respectively. A list is created with the list-block element. A list-block
contains one or more list-item elements, each of which contains exactly one
list-item-label element and one list-item-body element.

An example of a simple list is shown in Figure 4-34.
Figure 4-34:
Example of list-block

e this is itemone
e thisis itemtw

26 Introduction to XSL-FO

Ibex PDF Creator Developers Guide

This list was created with the FO shown in Figure 4-35:

Figure 4-35: <l i st - bl ock
FO for the list-block margi n-1eft="3cm margin-right="3cm paddi ng=' 3pt"
border='.1pt solid bl ue'
provi si onal - di st ance- bet ween-starts="0. 5cni
provi si onal -1 abel - separation="'0.1lcm >
<list-itemp
<list-itemlabel end-indent='label-end()'>
<bl ock>• </ bl ock>
</list-item]label >
<list-itembody start-indent="body-start()'>
<bl ock>this is item one</bl ock>
</list-item body>
</[list-itenmr

<list-itemp
<list-itemlabel end-indent='label-end()'>
<bl ock>• </ bl ock>
</list-item]label >
<list-itembody start-indent="body-start()'>
<bl ock>this is item two</bl ock>
</list-item body>
</[list-itenmr
</1ist-bl ock>

A list sets the two columns to widths specified using the attributes of the list-block
elements. The provisional-distance-between-starts attribute specifies the distance
between the start of the label column and the start of the body column. The
provisional-label-separation attribute sets how much of the label column should be left
empty to provide a blank space between the columns.

If we expand the above example and add more content to the first body we can see that
the content is constrained to the column. If we add content to the first list-item-body as
shown in Figure 4-36 we get the list shown in Figure 4-37.

Figure 4-36: <l i st-i tem body start-indent="body-start()'>
. <bl ock>
FO for the list-block If your Network Administrator has enabled it,
M crosoft W ndows can exam ne your network and
automatical ly di scover network connection settings.
</ bl ock>
</list-item body>

Figure 4-37:
Output for the

list-block e |f your Network Administrator has enabled it,
M crosoft W ndows can examni ne your networKk
and autonmtical |y di scover network connection
settings.

e thisis itemtwo

For more information on lists see page 75.

4.10 Creating tables

A table is created using the table element. Within the table element there can be one
table-header element, any number of table-body elements (which contain the rows) and
one table-footer element. Each of the table-header, table-body and table-footer

Introduction to XSL-FO 27

Ibex PDF Creator Developers Guide

elements contains one or more table-row elements, each containing one or more
table-cell elements which in turn contain block-level elements such as block, table and
list-block.

Since a table-cell can contain any block-level element you can easily create tables which
contain text, nested tables or lists. Table headers and footers defined with the
table-header and table-footer elements are automatically repeated at each page break,
although this can be suppressed if required.

Figure 4-38 shows the FO for a simple table and Figure 4-39 shows the table created
from the FO.

Figure 4-38: <t abl e>

FO for a table

Figure 4-39:
Simple table from
the above FO

4.10.1

<t abl e- body>
<t abl e-r ow>
<tabl e-cell border="1pt solid blue' padding='2pt'>
<bl ock>row 1 col um 1</ bl ock>
</table-cell>
<tabl e-cel| border="1pt solid blue' padding='2pt'>
<bl ock>row 1 col um 2</bl ock>
</table-cell>
</t abl e-row>
<tabl e-cel|l border="1pt solid blue' paddi ng='2pt'>
<bl ock>row 1 col um 1</ bl ock>
</table-cell>
<tabl e-cell border="1pt solid blue' paddi ng='2pt'>
<bl ock>row 1 col um 2</ bl ock>
</table-cell>
</ tabl e-row>
</t abl e- body>
</t abl e>

This FO produces the table shown in Figure 4-39.

row 1 colum 1 row 1 colum 2

row 2 colum 1 row 2 colum 2

The padding and border attributes are not inherited from containing elements so must
be defined on the table-cell elements.

Setting table column widths

The width of a table column is set using the table-column element. A table element
contains zero or more table-column elements each of which defines properties such as
width and background-color for a columnin the table.

To make the first column 30% of the table width we would add table-column elements as
shown in Figure 4-40, which creates the output shown in Figure 4-41.

28 Introduction to XSL-FO

Ibex PDF Creator

Developers Guide

Figure 4-40: <t abl e>
Table with
table-column

<t abl e- col um col um-wi dt h=" 30% col um- nunber="1"'/>
<t abl e- col umm col um-wi dt h="70% col um- nunber="'2"'/>

elements
<t abl e- body>
<t abl e-r ow>
<tabl e-cel| border="1pt solid blue' padding='2pt'>
<bl ock>row 1 col um 1</ bl ock>
</tabl e-cell >
<tabl e-cel| border="1pt solid blue' padding='2pt'>
<bl ock>row 1 col um 2</ bl ock>
</tabl e-cell >
</t abl e-row>
<t abl e-r ow>
<tabl e-cell border="1pt solid blue' paddi ng='2pt'>
<bl ock>row 1 col um 1</ bl ock>
</table-cell>
<tabl e-cell border="1pt solid blue' paddi ng='2pt'>
<bl ock>row 1 col um 2</ bl ock>
</table-cell>
</t abl e-row>
</t abl e- body>
</ tabl e>
Figure 4-41:
Rendered table with row 1 colum 1 row 1 colum 2
specified widths row 2 colum 1 row 2 colum 2

For more information on tables see page 79.

Introduction to XSL-FO

29

30 Introduction to XSL-FO

5.1

511

Chapter 5

Using Ibex

This chapter describes how to call the Ibex APl and how to use the accompanying
command line program.

Ibex command line program

Although primarily intended to be used as a part of a larger application, Ibex ships with a
command line program which can be used to create PDF files from FO files.

The command line programs shipped with Ibex are ibex10.exe (which uses .NET 1.0),
ibex11.exe (which uses .NET 1.1) and ibex.exe (which uses .NET 2.0).

The command line syntax is the same for all programs. In these examples we use
ibex.exe.

To create a PDF file from an FO file specify the file names on the command line. For
instance to create hello.pdf from hello.fo, you do this:

i bex hello.fo hello. pdf

XSLT translation

The command line program will accept XML data and an XSLT stylesheet as inputs. The
XML will be translated to FO by the stylesheet and the results then formatted to PDF.
The command line syntax is:

i bex -xsl xsl-file xm-file pdf-file
So to create a PDF file from the files book.xml and book.xsl, the command is:
i bex -xsl book. xsl book.xm book. pdf

XSLT parameters can be passed to the stylesheet by adding them as name-value pairs to
the command line. For instance, if we want to define the parameter called "age" to the
value "30" we use a command like this:

i bex -xsl book. xsl book.xm hello.pdf "age=30"

The use of the double quotes around the name-value pair is necessary on some
operating systems to force them to come through as a single parameter to the Ibex
program.

Using Ibex 31

Ibex PDF Creator Developers Guide

5.1.2 Logging from the command line
Any informational or error messages will be logged to the console. To send error
messages to a file as well, use the -logfile option. For example to log errors to the file
ibex.log, you would do this:
i bex -logfile ibex.log hello.fo hello. pdf
5.1.3 Listing available fonts
You can also list the fonts which are available (based on what fonts are installed on your
system) by using the -fonts option like this:
i bex -fonts
The list of fonts is produced as a FO file to the standard output. This can be redirected to
a file and then used as input to Ibex to create a PDF file containing a table which looks
like this:
file 'usage lexample
c:\windows\fonts\MOB_____.TTF |10pt minion 10pt minion
minion c:\windows\fonts\MOB____ _ .TTF |bold 10pt minion bold 10pt minion
c:\windows\fonts\MOI_____.TTF |italic 10pt minion italic 10pt minion
c:\windows\fonts\MOBI____.TTF |bold italic 10pt minion |bold italic 10pt minion
The list of fonts can be limited to fonts whose name contains a specified string by
passing the string on the command line. For instance if we wanted to see what versions
of "arial" are installed, we can use the command:
i bex -fonts arial
5.2 The lbex API

A PDF document is generated using the FODocument object which is in the ibex4
namespace.

First you create a new FODocument object and then calling the generate() method on
that object. The generate() method has various versions which take different
parameters depending on whether the input is from files or streams and whether XSLT
translation should occur.

The FODocument object is not thread safe. A new FODcoument should be created for
each PDF file to be created. Ibex does support creating multiple PDF files concurrently
on multiple threads, as long as each PDF file is associated with a unique FODocument
instance.

Example C# code to convert the file "manual.fo" to "manual.pdf" the code is shown in
Figure 5-1, the equivalent VB.NET code is in Figure 5-2.

32 Using Ibex

Ibex PDF Creator Developers Guide

Figure 5-1: usi ng System

C# code to create a

usi ng i bex4;

PDF from an FO file publ i ¢ class Sinple {

static void Main(string[] args) {
FODocunent doc = new FODocunent ();

gen. generate("manual .fo", "nmanual.pdf");

Figure5-2: I nports System
VB.NET code to create | TPOrts i bex4
a PDF from an FO file pbdul e Modul el

521

5.2.2

Sub Mai n()

Di m doc As New FQDocunent

doc. generat e("manual . fo", "manual . pdf ")
End Sub

End Modul e

Projects need to have a reference to the ibex DLL.

Generating to File
public void generate(string fo_file_nanme, string pdf_file_nane)

This will read the FO contained in the file named in pdf file_name and create the PDF file
named in pdf_file_name.

Generating using streams

public void generate(Stream fo_stream Stream pdf_stream)

public void generate(Streamfo_stream Stream pdf_stream bool close_stream)

This will read the FO from the System.10.Stream called fo_stream and create the PDF file
into the System.|O.Stream pdf stream. These streams can be anything derived from
System.lO.Stream, such as System.IO.FileStream or System.lO.MemoryStream.

If close_stream is true the PDF stream will be closed after the PDF file is generated, if
false it will not. By default the stream is closed. Not closing the stream is useful if you are
generating to a MemoryStream object as the bytes cannot be read from the
MemoryStream if it has been closed.

Using Ibex 33

5.2.3

524

Ibex PDF Creator Developers Guide

Generating a PDF from XML and XSL

These methods take XML, an XSLT stylesheet, and a stream to write the resulting PDF
file to.

public void generate(Stream xm _stream Stream xsl_stream Stream pdf_stream)

public void generate(Stream xm _stream Stream xsl_stream Stream pdf_stream bool
cl oseStream)

Ibex uses the .NET XSLT processor to transform the XML using the specified stylesheet
and passes the resulting FO to the PDF creation routines. XSLT transformation is faster
or more efficient in .NET 2.0 and later and we recommend using this version or later if
possible.

Generate a PDF from XML and XSL with parameters

These methods are similar to the ones in the previous section but take an additional
hashtable which (if not null) should contain name-value pairs which are then passed as
arguments to the XSLT translation process.

public void generate(Stream xm _stream Stream xsl_stream Stream pdf_stream
bool cl ose_stream Hashtable parans)

34 Using Ibex

Chapter 6

Error Handling & Logging

This chapter describes error handling using the Ibex API.

Ibex associates an error handler with the library as a whole. Generally this error handler
will log a message and not throw an exception.

The Ibex Logger object is a singleton which is retrieved using a call to the
ibex4.logging.Logger.getLogger() method. Typically you would import the ibex4.logging
namespace and then access the logger as shown in Figure 6-1.

Figure 6-1: usi ng i bex4. | oggi ng;

Clearing existing

voi d sunfunc() {

error handlers | ggger . get Logger (). ¢l ear Handl ers() :

6.1

The default error handler writes messages to the console. Messages are displayed in
various circumstances including:

¢ when an invalid attribute is found;
* when areference is made to a font or image file which cannot be found;

* when a formatting error occurs, such as defining the widths of columns in table that
exceed the available width.

As the Ibex Logger is a singleton object, logging should be configured once at the start
of an application, not on a per-document basis.

Error severity

To change the level of information logged you can set the level on the logging object to
one of the values defined in the ibex4.logging.Level object. Possible levels of logging
which can be set are:

SEVERE WARNING INFO CONFIG FINE FINER FINEST

An example of how to set the logger to log only messages which are WARNING or worse
is shown in Figure 6-2.

Error Handling & Logging 35

Ibex PDF Creator Developers Guide

Figure 6-2: usi ng System

Setting the error | .
usi ng i bex4;
level ysing i bex4. | oggi ng;

public class Create {
public static void Main(string[] args) {
PDFDocunent doc = new PDFDocunent () ;

Logger . get Logger () . set Level (Level . WARNI NG) ;

6.2 Logging to a file

To log messages to a file, create an ibex4.logging.FileHandler object and then tell the
logger to log to this object. The example in Figure 6-3 logs to the file "log.txt", but any
valid file name can be used.

Figure 6-3: usi ng System

Logging to a file Usi ng ibexa; =
usi ng i bex4. 1 oggi ng;

public class Create {
public static void Main(string[] args) {

Logger . get Logger ()
.set Level (Level . SEVERE)
. cl ear Handl er s()
. addHandl er (
new Fil eHandl er ("l og. txt"));

The FileHandler object synchronises access to the log file.

If you omit the clearHandlers() call shown in the above example, log records will be
written to the default console handler and also to the file handler. You will see error
messages on the console and they will also be written to the file.

6.3 Logging to a stream

Ibex can log messages to a stream created by the caller. The stream is any object which
implements the System.|O.Stream interface.

To log messages to a stream, create an ibex4.logging.StreamHandler object and then tell
the logger to log to this object. The example in Figure 6-4 logs to a MemoryStream, but
any valid stream can be used.

Figure 6-4: usi ng System

Logging to a stream USi ng System | Q
g&ing usi ng i bex4;

usi ng i bex4. 1 oggi ng;
public class Create {
public static void Main(string[] args) {
Logger . get Logger () . cl ear Handl er s() ;
MenorySt ream stream = new MenoryStrean();

StreanHandl er h = new StreanHandl er(stream);
Logger . get Logger () . addHandl er (h)

36 Error Handling & Logging

Ibex PDF Creator Developers Guide

If you omit the clearHandlers() call shown in the above example log records will be
written to the default console handler and to the stream handler as well.

6.4 Logging to multiple destinations

Errors can be logged to any number of handlers. The example in Figure 6-5 logs to a file
called "xslfo.log", to a memory stream and to the console.

Figure 6-5: usi ng System
Logging to multiple USi ng System | G,
destinations ysj ng i bex4;

usi ng i bex4. 1 oggi ng;

public class Create {

public static void Main(string[] args) {
MenorySt ream stream = new MenoryStrean();
Logger . get Logger ()

. addHandl er (new Consol eHandl er ())

.addHandl er (new StreanHandl er(stream))
. addHandl er (new Fi | eHandl er ("xsl fo.log"));

Error Handling & Logging 37

38 Error Handling & Logging

7.1

Figure 7-1:
Simple FO file

Chapter 7

Page Layout

This chapter describes how to configure the size of a page and position the regions in
which content appears.

Using one layout for all pages

The first element in any FO file is the root element which contains the whole FO tree
defining the document and declares the XML namespaces used. Figure 7-1 shows a
simple FO file.

<root xm ns="http://ww.w3. org/ 1999/ XSL/ For mat " >
<l ayout - mast er - set >
<si npl e- page- mast er mast er - nane="1 ayout" page-w dt h="8.5i n" page- hei ght ="8i n">
<r egi on- body regi on- nane="body" margi n="2. 5cni'/ >
</ si npl e- page- nast er >
</ | ayout - nast er - set >
<page- sequence naster-reference="Iayout">
<fl ow fl ow nanme="body" >
<bl ock>Hel | o wor | d</ bl ock>
</ fl ow>
</ page- sequence>
</ root >

The first FO element within the root element is the layout-master-set element. This
contains one or more simple-page-master elements which define the layout of a page,
including the width and height.

The simple-page-master element is like a template for a page, defining the page size and
the areas on the page into which content will be placed. As content is read from a flow,
Ibex decides which simple-page-master to use as the basis for creating the current page.
If there is only one simple-page-master then it is always used. If there are several
simple-page-masters then a selection process is used to see which one applies to the
current page.

The simple-page-master element contains region elements such as region-body which
define an area on the page which can be filled with text or image content.

There can be any number of simple-page-master elements provided each has a unique
master-name attribute.

Figure 7-2 shows an example of a layout-master-set.

Page Layout 39

Ibex PDF Creator Developers Guide

Figure 7-2: <| ayout - nast er - set >
Example <si npl e- page- mast er mast er - name="fr ont - page" >

<regi on- body margi n-right="2. 5cn{
layout-master-set mar gi n- | ef t =" 4cnt

mar gi n- bot t om=" 4cnt
mar gi n-t op="4cni' regi on- nane="body"
backgr ound- col or =" #eeeeee"/ >
<region-after extent="3cni region-nane="footer"
backgr ound- col or =' #dddddd' / >
</ si npl e- page- mast er >
</ | ayout - nast er - set >

This shows a layout-master-set which contains a single simple-page-master with a
master-name of "front-page".

This simple-page-master defines a page which has two regions on which content can be
printed. A page defined with this layout appears in the examples at the end of this
chapter, on page 45. For the purposes of this example the regions have
background-colors defined to show them clearly. More complex layouts showing five
regions appear in the examples on page 45.

Having defined a page layout which has a name, (defined by its master-name attribute)
we then use the page-sequence element to define the content of the document. The
page-sequence element has a master-name attribute which should match the
master-name defined for a simple-page-master (or a page-sequence-master, more of
which later).

A page-sequence for printing "Hello World" is shown in Figure 7-3.

Figure 7-3: <page- sequence nast er-ref erence="front - page" >
page-sequence for <fl ow fl ow name="body" >

<bl ock>Hel | o Wor | d</ bl ock>
helloworld </ | ows

</ page- sequence>

A key thing to note is that the content of the page-sequence is contained in a flow
element. For content of the flow to appear on the PDF page the flow-name attribute of
the flow element must match the region-name of a region on the page master specified by
the master-reference on the page-sequence. If the flow-name does not match a
region-name, none of the content of this flow will appear in the output document.

It is important to understand this feature. It means that a page-sequence can contain
multiple flow and static-content elements each containing a flow element with a
different flow-name. Only flow elements whose flow-name attribute matches a
region-name defined in the current page sequence will appear. This is how we produce
different formats for odd and even pages.

Figure 7-4 shows in matching colors the attributes which should match for content to
appear.

40 Page Layout

Ibex PDF Creator Developers Guide

Figure 7-4: <r oot xm ns="http://ww. W3. or g/ 1999/ XSL/ For mat " >
Matching flow and ~ <! @yout -mast er - set >
- <si npl e- page- mast er mast er - nanme="fr ont - page" >
region names <r egi on- body margi n-right="2.5cn{
mar gi n-1 eft ="4cn{
mar gi n- bot t om=" 4cnt
mar gi n-top="4cnl' regi on- nanme="body"/ >
<region-after extent="3cni region-nane="footer"/>
</ si npl e- page- nast er >
</l ayout - nast er - set >

<page- sequence master-reference="front-page">
<fl ow fl ow nanme="body" >
<bl ock>Hel | o Wor| d</ bl ock>
</fl ow>
</ page- sequence>
</root >

7.2 Using different layouts for different pages

It is possible to define different page layouts for different pages. This can be done in two
possible ways, either by assigning different page masters to different page sequences,
or by using a page-master-alternatives element which chooses from a set of
simple-page-master elements based on criteria such as the current page number.

7.2.1 Using different page masters for each page sequence

Using a different page master for each page sequence is useful when you can clearly
divide the document into distinct sections. For example, this manual has a different page
master for the front cover and for the pages in the table of contents. The page masters
for this are shown in Figure 7-5.

Figure 7-5: <l ayout - nast er - set >

Two page masters <si npl e- page- mast er mast er - nane="front - page" margi n="1. 5cni’ page- hei ght ="297m{'
page- wi dt h="210m" >

<r egi on- body regi on- nane="body" margi n="0. 75cm 0. 5cm 0. 75cm 3cnt'/ >

<r egi on- bef ore regi on- name="header" extent="2.5cnl/>

<regi on-after region-nane="footer" extent="1lcnl'/>

<region-start extent="1cnl' background-col or ="#eeeeee"/ >

</ si npl e- page- nmast er >

<si npl e- page- mast er mast er - nane="t oc- page" nmargi n="1. 5cn' >
<r egi on- body col um-count="1" regi on-nanme="body" margi n="0. 75cm 0. 5cm 1cm 3cn¥
margi n-1 eft="2cnt' margin-right="1.5cnt />
<r egi on- bef ore regi on- nanme="header" extent="1cni'/>
<regi on-after region-nane="footer" extent="0.75cnt/>
<region-start extent="2cni />
<regi on-end regi on-nanme="end" extent="1.5cn />
</ si npl e- page- nast er >

</l ayout - nast er - set >

Content is allocated to the two sections of the document using two separate
page-sequences, as shown in Figure 7-6.

Page Layout 41

Ibex PDF Creator Developers Guide

Figure 7-6: <page- sequence naster-reference="front - page" >
Allocating contentto <! g\tl)vl ';Lck";"' name="body" >
two page masters content that appears in the body of the front page
</ bl ock>
</fl ow>
</ page- sequence>

<page- sequence naster-reference="toc-page">
<fl ow fl ow nanme="body" >
<bl ock>
content that appears in the table of contents
</ bl ock>
</ fl ow>
</ page- sequence>

When using this approach content from one flow always appears on pages with the
same layout. Flowing content across different page layouts is described in the next
section.

7.2.2 Using page master alternatives

Often it is desirable to have content flow continuously across pages with different
layouts. This is done in the Ibex manual, where the pages are laid out like this:

first page of chapter has no page header

page number is on the right of the footer

even numbered page has a page header

page number is on the left of the footer

odd numbered page has a page header

page number is on the right of the footer

The three page masters are shown in Figure 7-7.

ngre77:<sinplg-page-naster mast er - nane="chapt er - odd- no- header " >
P ters f <reg!0n—b0dy reglpn—nanez"body" nargln="2.50n12.50n12.59n14.00nf(>
agerna%ers or <regi on-after region-nane="footer-odd" extent="1.5cn display-align="before"/>
three different </ si npl e- page- nast er >
layouts
<si npl e- page- nast er nmst er - nane="chapt er - even" >
<regi on- body regi on-nanme="body" margi n="2.5cm 2. 5cm 2. 5cm 4. Ocnt col um-count="1"/>
<regi on- bef ore regi on- nane="header - even" extent="1.5cn display-align="after"/>
<regi on-after region-nane="footer-even" extent="1.5cn' display-align="before"/>
</ si npl e- page- nast er >

<si npl e- page- mast er mast er - nane="chapt er - odd" >
<regi on- body regi on-name="body" margi n="2.5cm 2. 5cm 2. 5cm 4. Ocni'/ >
<r egi on- bef ore regi on- name="header - odd" extent="1.5cnt display-align="after"/>
<regi on-after region-nane="footer-odd" extent="1.5cn display-align="before"/>
</ si npl e- page- nast er >

42 Page Layout

Figure 7-8:

The
page-sequence-
master element

Ibex PDF Creator Developers Guide

To make content from a single flow element span multiple pages with different page
layouts we use a page-sequence-master element as shown in Figure 7-8. This element
contains a repeatable-page-master-alternatives element, which in turn contains a set of
conditional-page-master-reference elements.

When formatting content from a page-sequence which has flow-name="chapter", Ibex
looks at each of the conditional-page-master-reference elements and chooses which one
will be active for the current page. This is done by evaluating conditions specified with
the page-position attribute. As a page is created, each
conditional-page-master-reference is considered in turn, starting from the first one. The
first one found whose conditions are satisfied will determine the page master for the
current page. Since alternatives are considered in the order in which they appear in the
FO, the order in which the alternatives are listed is important.

When the first page of the chapter is being created, the page-position="first" condition
is true, so the first conditional-page-master-reference will be chosen because it has
page-position = "first". This has master-reference = "chapter-odd-no-header", so the
simple-page-master with master-name = "chapter-odd-no-header" becomes the active
page master for the first page of the chapter.

When the second page of the chapter is being created, the page-position="first" is no
longer true so the conditions on the next conditional-page-master-reference will be
evaluated.

Although not shown in this example, other attributes such as blank-or-not-blank can be
used to control the selection of one of the alternatives.

<page- sequence- mast er naster-nane="chapter" >
<r epeat abl e- page- naster-al ternati ves>

<condi ti onal - page- mast er-ref erence page-position="first"
mast er - r ef er ence="chapt er - odd- no- header "/ >

<condi ti onal - page- mast er - r ef erence odd- or - even="odd"
mast er - r ef erence="chapt er - odd"/ >

<condi ti onal - page- mast er - r ef erence odd- or-even="even"
mast er - r ef erence="chapt er-even"/ >

</ repeat abl e- page- master-al ternatives>
</ page- sequence- nast er >

Page Layout 43

44 Page Layout

region-before

region-body

This page layout is created with the XML below. Note that by default the region-start
and region-end regions extend the full height of the page and the region-before and
region-after regions are narrowed so as not to overlap the side regions. See the
following page for an example where the precedence attribute is used to change this.

<si npl e- page- nast er nast er - nane="r egi on- exanpl e- 1" >

<r egi on- body nar gi n="2. 5cni" regi on- name="body"
backgr ound- col or =" #eeeeee"/ >

<r egi on- bef ore extent="2.5cm' regi on- nane="header"
backgr ound- col or =" #dddddd" / >

<region-after extent="2.5cnt region-nane="footer"
backgr ound- col or =" #dddddd" / >

<region-start extent="2.5cn' region-nane="start"
backgr ound- col or =" #aaaaaa"/ >

<r egi on-end extent="2.5cm" region-nanme="end"
backgr ound- col or =" #aaaaaa"/ >

</ si npl e- page- nast er >

region-after

Layout examples 45

region-before region-example-1-margins

region-body

This page layout is created with the XML below. Note that
by default the region-start and region-end regions extend
the full height of the page and the region-before and
region-after regions are narrowed so as not to overlap the
side regions. See the following page for an example where
the precedence attribute is used to change this.

This layout differs from the previous page in that the
simple-page-master has the margin attribute set to
"2.5cm". This creates a margin of 2.5cm around the entire
page, and regions are positioned with respect to the
rectangle created by the margins, not with respect to the
edges of the paper.

<si npl e- page- mast er
mast er - name="r egi on- exanpl e- 1M' mar gi n="2. 5cni’' >

<r egi on- body nmar gi n="2. 5cnf
regi on- name="body"
backgr ound- col or =" #eeeeee"/ >

<r egi on- bef ore extent="2.5cni
r egi on- nane="header"
backgr ound- col or =" #dddddd" / >

<regi on-after extent="2.5cnt
regi on- name="f oot er"
backgr ound- col or =" #dddddd" / >

<regi on-start extent="2.5cnt
regi on- nane="start"
backgr ound- col or =" #aaaaaa"/ >
<regi on-end extent="2.5cn
r egi on- name="end"
backgr ound- col or =" #aaaaaa"/ >

</ si npl e- page- nast er >

region-after

46 Layout examples

region-before

region-body

This page layout is created with the XML below. Note that the region-before and
region-after regions have precedence="true" so they extend the full width of the page
and the side regions are reduced in height to the regions do not overlap.

<si npl e- page- nast er nast er - nane="r egi on- exanpl e- 1" >

<r egi on- body nar gi n="2. 5cni" regi on- name="body"
backgr ound- col or =" #eeeeee"/ >

<regi on- bef ore extent="2.5cm' regi on- nane="header"
precedence="t rue" background-col or ="#dddddd"/ >

<region-after extent="2.5cnt region-nane="footer"
precedence="true" background-col or="#dddddd"/ >

<region-start extent="2.5cn' region-nane="start"
backgr ound- col or =" #aaaaaa"/ >

<r egi on-end extent="2.5cm" region-nanme="end"
backgr ound- col or =" #aaaaaa"/ >

</ si npl e- page- nast er >

region-after

Layout examples 47

48 Layout examples

Chapter 8

Text Formatting

Text is created in the output document using the block element.

The simplest possible block is shown in Figure 8-1.

Figure 8-1: <bl ock>hel | o wor | d</ bl ock>
A simple block

This creates a paragraph in the output document which has the default font (which is
helvetica) and the default alignment (which is left).

The sections below describe elements and attributes used to control the formatting of
text.

8.1 Using the font attribute

The quickest way to get the font you require is to use the f ont attribute, as shown in
Figure 8-2.

Figure 8-2: <bl ock font="bold 12pt garanond”>hel | o worl d</bl ock>
Using the font

attribute
Using the font attribute is simpler than specifying all the individual attributes such as

font-weight and font-size, but does need some care. When using the font attribute the
order of the words is important. The font style (normal, italic) and the font weight (bold,
normal) must come before the font size. The font name must come after the font size. If
the font name contains spaces, it must be enclosed in quotes, as shown in Figure 8-3.

Figure 8-3: <bl ock font="bold 12pt "tines new roman"">

A font name with hello world
</ bl ock>

spaces

The full syntax of the font attribute is shown in Figure 8-4.

Figure8-4:[[<font-style> || <font-variant> || <font-weight>]?
Syntax of font <font-size> [/ <lineheight>]?
<font-famly>]
attribute

Text Formatting 49

Ibex PDF Creator Developers Guide

8.2 Using the font-family attribute
The font-family attribute is used to specify the name of the font to use. More than one
font name can be listed. These names can be specific font names such as "times roman"
or "garamond", or generic names such as "monospace". Ibex will use the first name in
the list which matches a font on your system. Font names are separated by a comma.
The ability to list multiple font names derives from the CSS standard. It is designed to
support the creation of a web page which will be rendered on a computer that may not
have the same fonts installed as the page's author. In practice when you generate a PDF
file you know what fonts you have installed, so you will probably just specify one font.

8.3 Italic text
Text is made italic using the font-style attribute.
The font style can be "normal" or "italic". Other font values such as the font-family are
inherited from the current font, as shown in Figure 8-5. The output created by the FO in
Figure 8-5 is shown in Figure 8-6.

Figure 8-5: <bl ock font-fanily="arial">
Using font-style o BIeLLck):i nline font-style="italic">world</inline>
Figure 8-6: hello world
Using the font-style
attribute
8.4 Bold text

Text is made bold using the font-weight attribute.

The font weight can be "normal" or "bold", as shown in Figure 8-7. The output created
by the FO in Figure 8-7 is shown in Figure 8-8.

Figure 8-7: <bl ock font-fanily="arial">
Using the font-weight hel l o <inline font-wei ght="bol d">worl d</inline>
</ bl ock>
attribute
Figure 8-8:

Using font-weight

8.5

hello world

Text size

The size of text is set using the font-size attribute.

The font size specifies the size of the font and can be specified in a number of ways
listed below.

50 Text Formatting

8.6

8.7

8.8

Ibex PDF Creator Developers Guide

A numeric size

The most common approach is to specify the size you want in points, for example
font-size="12pt" or font-size="30pt".

An absolute size

Attribute Value Size
xx-small 7.0pt
x-small 8.3pt
small 10.0pt
medium 12.0pt
large 14.4pt
x-large 17.4pt
xx-large 20.7pt

A relative size

This sets the font size based on the size of the prevailing font.

Attribute Value Size
smaller existing size [1.2
larger existing size * 1.2

Another way of setting the font size relative to the current font size is to use the "em"
unit. "1.0em" is the current font size, so "2.0em" specifies a size which is twice as big as
the current size.

Underlining text

Text is underlined using the text-decoration attribute.

Specifying text-decoration="underline" will cause text to be underlined, like this.

Striking out text

You can strike out text using the text-decoration attribute.

Specifying text-decoration="Iline-through" will cause text to be underlined, like this.

Horizontal alignment

Horizontal alignment is specified using the text-align attribute. The default alignment is
left.

Valid values for text-align are shown in the table below.

Value Effect
left text is aligned against the left edge of the block
right text is aligned against the right edge of the block

Text Formatting 51

Ibex PDF Creator

Developers Guide

Value

Effect

center

text is centered in the middle of the block

justify

text is aligned against both the left and right edges of the block.
Space is inserted between words to achieve this effect. Setting
text-align = "justify" does not align the last line of the paragraph,
this is done using text-align-last = "justify".

start

text is aligned against the start edge, which for a block that is not
rotated, with the default left-to-right writing direction, is the left
edge.

end

text is aligned against the end edge, which for a block that is not
rotated, with the default left-to-right writing direction, is the right
edge.

inside

assuming the document is to be bound as a book, text is aligned
against the edge which is nearest the binding. For an
odd-numbered page this will be the left edge, for an even
numbered page it will be the right edge.

outside

assuming the document is to be bound as a book, text is aligned
against the edge which is furtherest from the binding. For an
odd-numbered page this will be the right edge, for an even
numbered page it will be the left edge.

For text-align values of "inside" and "outside" the page number is used to determine the
binding edge, which is assumed to be the left hand edge of odd-numbered pages and
the right hand edge of even-numbered pages.

The effect of some of the text-align values is shown in Figure 8-9.

Figure 8-9:
Effects of text-align

values

Thi s paragraph has no text-align attribute, so by default
is aligned to the left, so that the words form a snooth
line against the left margin and a ragged edge on the
right.

Thi s paragraph has text-align="right" and so is aligned to
the right, so that the words forma snooth |ine agai nst
the right margi n and have a ragged edge on the left.

Thi s paragraph has text-align="justify", so that the words
form a snmooth line against both the left and right
margi ns, except for the last 1line which is aligned
i ndependently using the text-align-last attribute.

Thi s paragraph has text-align="center", so that the words
are centered in the niddl e of the bl ock.

8.8.1 Justifying the last line of a paragraph

Specifying text-align="justify" will justify all lines of a paragraph except the last. This is
because a justified paragraph typically looks like the one in Figure 8-10, with the last line

not being justified.

52

Text Formatting

Figure 8-10:

Ibex PDF Creator

Developers Guide

Lorem ipsum dol or

sit anet, consectetuer adipiscing elit. Nunc nollis, turpis

Paragraph without vehi cul a al i quam auctor, metus turpis tenpus justo, eu gravida nisl nibh vitae nisl.

the last line justified

8.9

velit.

Cras a nisl.

Integer et netus vitae dui placerat egestas. Duis rutrum Nulla in
enim Suspendisse vel massa in mauris sagittis pharetra. Etiam hendrerit euisnod
Ut |aoreet |ectus nec nisl.

The text-align-last attribute controls the alignment of the last line of a paragraph. Values
include are shown in the table below:

Value Effect

relative if text-align is "justify", align the last line against the start edge
(normally the left edge), otherwise use the setting if the text-align
attribute.

left text is aligned against the left edge of the block

right text is aligned against the right edge of the block

start text is aligned against the start edge, which for a block that is not
rotated, with the default left-to-right writing direction, is the left
edge.

end text is aligned against the end edge, which for a block that is not
rotated, with the default left-to-right writing direction, is the right
edge.

inside assuming the document is to be bound as a book, text is aligned
against the edge which is nearest the binding. For an
odd-numbered page this will be the left edge, for an even
numbered page it will be the right edge.

outside assuming the document is to be bound as a book, text is aligned
against the edge which is furtherest from the binding. For an
odd-numbered page this will be the right edge, for an even
numbered page it will be the left edge.

justify justify the last line across the whole width of page.

Left and right margins

The margins of a block are specified using the margin-left and margin-right attributes.

The margin properties indent the edge of the paragraph by the specified amount from
the edge of the containing area.

The FO for a block with a 2.5cm left margin is shown in Figure 8-11.

Figure 8-11: <bl ock margin-1eft="2.5cn >hell o worl d</ bl ock>

Setting the left
margin

If we nest another block inside this one, as shown in Figure 8-12, the margins are
cumulative. The output from this FO is shown in Figure 8-13.

Text Formatting 53

Ibex PDF Creator Developers Guide

Figure 8-12: <bl ock margin-left="2. 5cn'>

bl ock 1
Nestedblocks _"Cck margin-1eft="2. scnt >

bl ock 2
</ bl ock>
</ bl ock>

Figure 8-13: bl ock 1
Output from the bl ock 2
above FO

Putting background colors on the blocks shows this more clearly. The FO is in
Figure 8-14 and the output is in Figure 8-15.

Figure 8-14: <bl ock margin-1eft="2.5cnt background-col or ="#777777">

: bl ock 1
Nested blocks with o “rar gin- 1 ef t =" 2. 5t backgr ound- col or =" #999999" >

background color bl ock 2
</ bl ock>
</ bl ock>

Figure 8-15:

Output romabore .
FO

The approach to indentation defined in the XSL-FO standard is that the content of two

nested blocks which do not specify a margin have the same left edge. The edges of the

content (which in our example is the text) are aligned, and any borders and padding are

placed outside those edges. Figure 8-16 shows the FO for two nested blocks with no

margin attributes. The text will be vertically aligned and the background colors will be

placed outside the text. Figure 8-17 shows the resulting output.

Figure 8-16: <bl ock paddi ng="1cnt background-col or="#777777">

; bl ock 1
Nested bI?cks W't.h.no <bl ock paddi ng="1cn' background- col or ="#999999" >
margins specified bl ock 2
</ bl ock>
</ bl ock>

Figure 8-17:
Output from
nested blocks
with no
margins

In XSL-FO terms, both areas have the same start-indent and hence the same content
rectangle, and the padding on the outer block extends outside its content rectangle.
This may seem counter-intuitive to some developers used to the CSS model. You can
invoke the CSS nested areas model by specifying a margin-left value, even "opt".

54 Text Formatting

Ibex PDF Creator Developers Guide

8.10 Spacing between letters

The amount of space between two letters is dependent on the font used. Ibex reads the
TrueType or Type 1 font file and loads the width of each character. Kerning information
which specifies adjustments to the gaps between particular pairs of characters is also
read from the font file and used in the text formatting process.

The spacing between letters can be changed using the letter-spacing attribute. Any
value specified using this attribute is added to the default spacing specified by the font.

Figure 8-18 shows the FO to increase the letter spacing of some text. The resulting text is
shown in Figure 8-19.

Figure 8-18: <bl ock | etter-spaci ng="0. 2ent >WELLI NGTON NEW ZEALAND</ bl ock>
Using letter-spacing
Figure 8-19:

recformatedusng. WWEL L1 NGT ON NEW ZEALAND

letter-spacing

It is possible to make letters closer than normal using a negative value for letter-spacing.
Example FO for this is shown in Figure 8-20 and the result in Figure 8-21.

Figure 8-20: <bl ock | etter-spaci ng="-0. lent >WELLI NGTON NEW ZEALAND</ bl ock>
Moving letters closer

together
Figure 8-21:

Text formatted using\/E_LI I\GTO\I I\E\NZEN_N\D

negative
letter-spacing

8.11 Spacing before and after words

Spacing before and after text is specified using the space-start and space-end attributes
on the inline element.

The space-start attribute specifies space to appear before text, space-end specifies
space to appear after the text.

Figure 8-22 shows how to specify a gap between two words. This FO produces a 3cm gap
between the words as shown in Figure 8-23 .

Figure 8-22: <bl ock>
Using space-start o Elelolcclz:i nli ne space-start="3cn>worl d</inline>

Figure 8-23: hel I o
Output using
space-start

Space between words is collapsed (i.e. merged) by default. If a word has

space-end="1.0cm" and the following word has space-start="0.5cm", the gap between

wor | d

Text Formatting 55

Ibex PDF Creator Developers Guide

the two words will be the larger of the two spaces (i.e. 1.0cm), not the sum. FO showing
this is in Figure 8-24 and the output is in Figure 8-25.

Figure 8-24: <bl ock>
FO showi ; <! nl | ne space-end="1cm >hel |l o</inli ne>
O showing merging <inline space-start="0.5cn' >worl d</inline>
of spaces </ bl ock>

Figure 8-25: |
The resulting 1.0cm
space

wor | d

8.12 Forcing a line break

You can cause a line break in normal text by inserting an empty block element.
Figure 8-26 shows an FO example which does this and Figure 8-27 shows the resulting
output.

Figure 8-26: <bl ock>

Forcing a line break this will be line one <block/>this will be line two
</ bl ock>
Figure 8-27: this will be Iine one
Line break created this will be line two

with an empty block

8.13 Space at the start of a line

Space specified with the space-start attribute is normally discarded at the start of the
line. To force it to be retained use the space-start.conditionality attribute.

Figure 8-28 shows two blocks which create two lines. The first block will have no space
at the start of the word. The second block has space-start.conditionality="retain" so the
space specified by the space-start="1cm" will be retained. The output created by this FO
is shown in Figure 8-29.

Figure 8-28: <bl ock backgr ound- col or =" #eeeeee" >
Using retain <!n|ine space-start="1cm' >
di scard
</inline>
</ bl ock>
<bl ock background- col or =" #eeeeee" >
<inline space-start="1cnl' space-start.conditionality="retain">
retain
</inline>
</ bl ock>

Figure 8-29: ;i ... ¢
Output from using retain
retain

56 Text Formatting

Ibex PDF Creator Developers Guide

8.14 Vertical alignment

The vertical alignment of blocks of text within a containing flow or block is controlled by
the display-align attribute.

The vertical alignment of words on a line is controlled by the vertical-align attribute.
Text on a line is positioned relative to the baseline, which is shown in Figure 8-30.

By default text sits on the baseline. In the terms of the XSL-FO specification, this is the
alphabetic baseline.

40

The height of the font above the baseline is the ascender. The height of the font below
the baseline is the descender. Adding the ascender and descender values for the font
(not for individual characters) gives the font size. The leading is the space above and
below the characters, and is the difference between the line-height and the font-size.

Figure 8-30:

‘ /2 leadin
[[o]
The basel“ e

ascender line-height

baseline
descender

|1/2 leading ‘

The XSL-FO specification refers to the ascender value as the text-altitude and the
descender as the text-depth. Together these two values add up to the allocation
rectangle height. In these terms:

leading = (line-height - text-altitude - text-depth)
so

1/2 leading = (line-height - text-altitude - text-depth) / 2

By default the line height is 1.2em. The em unit is proportional to the size of the current
font, so as the font size increases so does the line height. This can be changed by setting
the Settings.LineHeightNormal value. For instance to make the line height larger and so
space text out more vertically you could use the code in Figure 8-31.

Figure 8-31: FODocunent doc = new FODocunent ();
Changing the def.ault doc. Settings. Li neHei ght Normal = "1.4ent';
line height

8.14.1 The effect of subscript and superscript text on line spacing

When calculating the largest characters on this line, we really mean those whose
ascender and descender values are greatest (i.e. futherest from the baseline). When
making this calculation, the value of the line-height-shift-adjustment attribute is
considered. If text is a subscript or superscript and so has a baseline-shift value which
changes its position vertically, this will also change its effective ascender and descender
values. If line-height-shift-adjustment = "consider-shifts" (the default value) then the
baseline-shift amount is taken into account when working out the greatest ascender and
descender. If line-height-shift-adjustment = "disregard-shifts" then the effect of the
baseline-shift is ignored. Setting line-height-shift-adjustment = "disregard-shifts" makes
lines stay the same distance apart regardless of subscript and superscript elements.

Text Formatting 57

Ibex PDF Creator Developers Guide

The effect line-height-shift-adjustment is shown in Figure 8-32; the first two lines are in a
block which has line-height-shift-adjustment= "consider-shifts" and so are further apart
than the second two which are in a block which has line-height-shift-adjustment =
"disregard-shifts":

Fi 8-32:
Igll;::ectssf Specifies a string on which content of cells in a table column will
disregard-shifts align (see the section, in the CSS2 Recommendationz).

Specifies a string on which content of cells in a table (éolumn will
align (see the section, in the CSS2 Recommendation®)

8.14.2 The baseline

The baseline is below the top of the text block a distance equal to 1/2 leading +
max(ascender), which places the baseline in the same place for all text elements. This
means that normally text rests on the same baseline regardless of the font size, as
shown in Figure 8-33.

Figure 8-33:

,,,,,,,,, [1/2 leading
Text on the baseline !)
ascender line-height
20pt

descender

baseline

|1/2 leading ‘

8.14.3 Subscript and superscript

Subscripted and superscripted text is created by using the baseline-shift attribute on an
inline element.

The effect of the baseline shift is shown in Figure 8-34, where the "pt" characters are in
an inline element with baseline-shift = "5pt".

Figure 8-34:

E 1ect O l)ase n hf ,,,,,,,,,‘1/2 leadin
h es i ing . .
- o 3 O p Da h
1 seline-shift

descender

baseline

|1/2 leading ‘

The FO to move a word above the current baseline by 5 points is shown in Figure 8-35
with the resulting output appears in Figure 8-36.

Figure 8-35: <bl ock

: hel l o
FO s‘hown‘]g <inline color="red" baseline-shift="5pt">
baseline-shift super
</inline>

</ bl ock>

Figure 8-36:
Output from the hel | o SUPer

above FO

58 Text Formatting

Figure 8-37:
Using the default
superscript

Ibex PDF Creator Developers Guide

Font files contain default baseline shift values for superscripted and subscripted text.
Rather than specifying baseline-shift="5pt", you can use the values "super" and "sub".
The FO to move a word above the current baseline by the default amount for the current
font is shown in Figure 8-37 with the resulting output in Figure 8-38. Using the "sub" and
"super" values is preferable to using specific measurements because it means (a) if you
change the font size of the paragraph you do not have to change all the baseline-shift
values and (b) you get the baseline sift the font designer intended.

<bl ock
hel |l o
<inline color="red" baseline-shift="super">
super
</inline>
</ bl ock>

Figure 8-38:

Output from the

hel | o SUPer

above FO

8.15

8.16

Figure 8-39:
An image on the
baseline

Line stacking strategies

XSL-FO uses the line-stacking-strategy attribute to determine how lines are stacked
vertically on a page. The default value of this attribute is "max-height". When the
"max-height" strategy is used the height of a line depends on the height of the
characters or images on that line. The information which follows assumes that this
default value is used. The other values for line-stacking-strategy, namely "font-height"
and "line-height" will produce different results, since the height of the line using these
strategies does not change when the content of the line changes.

The leading value is calculated from the line-height and font-size specified for the block
element which contains the text. It is constant for the whole block and is not affected by
other values specified on contained within the block.

The height the line is calculated using "largest" characters found on the line, i.e. the sum
of the max(ascender) and max(descender) values.

Aligning images

An inline element such as external-graphic is treated similarly to a text element. The
height of the image is used as the ascender value. The descender value is zero.

This means that by default an image will be positioned on the baseline, as shown in
Figure 8-39.

,,,,,,,,, [1/2 leading
4 O ascender line-height

descender

baseline

|1/2 leading ‘

Text Formatting 59

Ibex PDF Creator Developers Guide

A large image will contribute a large ascender value to the baseline placement
calculation, but will still sit on that baseline as shown in Figure 8-40.

Figure 8-40:
Large image on
baseline

baseline

8.16.1 The before-edge baseline

By default an element has an alignment-baseline value of "baseline" and so sits on the
baseline shown in the above diagrams. For a given line, the largest thing on that line
which has alignment-baseline = "baseline" establishes the position of the before edge
baseline. This is shown in Figure 8-41.

before edge baseline

Figure 8-41:
Image aligned to
before-edge baseline

4

To align another object with the before edge baseline, either set vertical-align = "top" or
alignment-baseline = "before-edge".

baseline

Figure 8-42 shows a second smaller image with default alignment, which positions it on
the baseline.

before edge baseline

Figure 8-42:
Differently aligned
images

baseline

By specifying vertical-align="top" on the external-graphic for the second image, we can
align this image to the before edge baseline and get the layout shown in Figure 8-43.

before edge baseline
Figure 8-43:

Two images aligned
using vertical-align

baseline

If all the elements on the line have vertical-align = "top", then the before edge baseline
cannot be calculated, so the text before edge baseline is used. This is the top of the
ascender for the font specified for the block which contains the elements.

60 Text Formatting

9.1

Chapter 9

Fonts

Ibex supports TrueType and Type 1 (Postscript) fonts. Font information is read from the
registry at runtime, no configuration of fonts is required.

Information on how to list the fonts which Ibex can use can be found in the usage
chapter on page 32.

Ibex reads the registry to see which fonts are available. Specifically the entries under
"HKLM\software\microsoft\windows nt\currentversion\fonts" list available fonts, and
those under "HKLM\software\microsoft\windows nt\currentversion\fontsubstitutes' list
translations from font names to existing fonts. Any of the font names listed in these two
places can be used.

In addition Type 1 font names are read from "HKLM\software\microsoft\windows
nt\currentversion\type 1 installer\type 1 fonts". Only Type 1 fonts that come as a PFM
(metrics) and PFB (binary) pair of files are supported.

How Ibex uses fonts

Your FO file contains a series of letters. Each of which is stored in the file as a one or two
byte code point such as 65 for 'A' or 0x8226 for the bullet character.

Ibex reads the TrueType or Type 1 font file and looks in the font to see if the font
supports that particular code point. If it does, then the font maps that code point to a
glyph, which is what gets displayed.

Not all fonts support all code points. For example arial.ttf is 370 KB in size, whereas
arialuni.ttf is 23,000 KB, because arialuni has glyphs for a many more code points that
arial.ttf.

Not all fonts map a code point to the same glyph. Some fonts map code points they do
not support to a glyph such as the square box one.

Fonts 61

62 Fonts

Chapter 10

Floats

The float element can be used to position an image or other elements to the side or top
of the page and cause text to flow around that image.

The paragraph in Figure 10-1 uses two float elements to make the image appear on the
left and right sides, with the text flowing around the images below them.

Figure 10-1: Lorem i psum dol or sit anet, consectetuer adipiscing elit. Duis in

Left and right floats

dol or quis |ectus cursus condi mentum Vestibulumid nunc vitae dui
senmper ultrices. Mauris a m. Phasellus eu |l acus. Pellentesque eu
ligula mattis odi o fauci bus fauci bus. Aliquamsit anet
nunc | aoreet tellus ullantorper mal esuada. Vestibul um
ante ipsumprims in faucibus orci luctus et ultrices
posuere cubilia Curae; Cras nec mauris. Proin cursus
tincidunt |eo. Maecenas netus |acus, inperdiet
fermentum blandit at, sollicitudin eu, sem Duis

el ementum | ibero vitae |acus. Curabitur justo. Aliquam erat vol utpat.
Maecenas nec nulla in nassa consectetuer vol utpat. Aenean turpis
nisl, rutruma, posuere sit amet, varius in, enim Praesent risus.
Nam vol ut pat eni m eget neque. Maecenas a dui ac felis nonummy sollicitudin. Proin
iaculis. Vestibulum in eros sit amet libero mollis convallis. nunc |aoreet tellus
ul | ancorper mal esuada. Vestibulum ante ipsum prims in faucibus orci luctus et
ultrices posuere cubilia Curae; Cras nec mauris. Proin cursus tincidunt |eo.
Maecenas netus lacus, inperdiet fermentum blandit at, sollicitudin eu, sem Duis
el ementum |ibero vitae lacus. Curabitur justo. Aliquam erat volutpat. Maecenas nec
nulla in massa consectetuer volutpat. Aenean turpis nisl, rutrum a, posuere sit
amet, varius in, enim Praesent risus. Nam vol utpat enim eget neque. Maecenas a dui
ac felis nonummy sollicitudin. Proin iaculis. Vestibulum in eros sit anmet |ibero
mol lis conval lis.

Floats 63

Ibex PDF Creator Developers Guide

Figure 10-2: <p| ock font-size="1.0en text-align="justify">
FO for float example <float float="left"> _ _ _
<bl ock- cont ai ner inline-progression-di mensi on="2. 5cni' >
<bl ock text-align="center">
<external -graphi c src="url (i bexorange.jpg)" content-w dt h="50%
paddi ng="3pt "/ >
</ bl ock>
</ bl ock- cont ai ner >
</fl oat >
Lorem i psum dol or sit amet, consectetuer adipiscing elit. Duis in dolor quis |ectus
cursus condi mrentum Vestibulumid nunc vitae
dui senper ultrices. Mauris a m. Phasellus eu |acus. Pellentesque eu ligula mattis
odi o fauci bus fauci bus. Aliquamsit anet
<float float="right">
<bl ock- cont ai ner inline-progression-di mensi on="2. 5cni' >
<bl ock text-align="center">
<external -graphi c src="url (i bexorange.jpg)" content-w dt h="50%
paddi ng="3pt "/ >
</ bl ock>
</ bl ock- cont ai ner >
</fl oat >
nunc | aoreet tellus ullancorper mal esuada. Vestibulumante ipsumprinmis in faucibus
orci luctus et ultrices posuere cubilia Curae; Cras nec mauris. Proin cursus
tinci dunt | eo. Maecenas nmetus |acus, inperdiet fermentum blandit at,
sollicitudin eu, sem Duis elementumlibero vitae |acus. Curabitur justo. Aliquam
erat volutpat. Miecenas nec nulla in massa consectetuer volutpat. Aenean turpis
nisl, rutruma, posuere sit amet, varius in, enim Praesent risus. Nam vol ut pat
eni m eget neque. Maecenas a dui ac felis nonumy sollicitudin. Proin iaculis.
Vestibulumin eros sit amet libero nmollis convallis. nunc |aoreet tellus
ul | antor per mal esuada. Vestibulumante i psumprims in faucibus orci |uctus et
ultrices posuere cubilia Curae; Cras nec mauris. Proin cursus tincidunt |eo.
Maecenas netus | acus,inperdiet fermentum blandit at, sollicitudin eu, sem
Duis el ementum libero vitae lacus. Curabitur justo. Aliquam erat vol utpat.
Maecenas nec nulla in massa consectetuer volutpat. Aenean turpis nisl, rutrum a,
posuere sit anmet, varius in, enim Praesent risus. Nam vol utpat eni meget neque.
Maecenas a dui ac felis nonumy sollicitudin. Proin iaculis. Vestibulumin eros
sit amet libero mollis convallis.
</ bl ock>

This effect is achieved by having a block which contains the text and two float elements.
The float elements in turn contain a block-container element which has a
inline-progression-dimension attribute defining the width of the float area. Any elements
inside the block-container will be in the float area. If a block-container is not used within
the float and the width of the float cannot be determined, a default configurable value is
used.

The FO for creating the above is show in Figure 10-2. Figure 10-2 is itself contained inside
a float with float = "before", which will make it appear at the top of the following page.
This technique is used in this manual when we do not want a large example to be split
across page breaks or to interrupt the content. When a float has float = "before", its
position in the PDF file is not the same as its position in the FO file, in that it will be
moved to the top of the next page and the blocks before and after the float will flow as
if the float was not there.

The side on which the float occurs is specified using the float attribute. This can be set to
"left" or "right" to position the float at the side of the page. It can also be set to
"before" to position the float at the start of the next page.

Side floats (with float = "left" or float = "right") are closely tied to the block which
contains the float element. If the float element does not fit on the page, then the float
and some or all of the containing block will be moved to the following page. This ensures
that the text in the block does not refer to (for example) an image in the float which is
not on the same page as the text.

64 Floats

10.1

Ibex PDF Creator Developers Guide

How the float width is calculated

Ibex looks at the content of the float element to try and determine how wide the float
should be. If a block-container element is found directly below the float element, and
this block-container has a width attribute, then that determines the width of the float. If
no width can be found, then the width of the float is calculated from by multplying the
containing block width by Settings.SideFloatDefaultWidthPercentage, which defaults to
30%.

Floats 65

66 Floats

Chapter 11

Space Handling

XSL-FO defines various attributes for managing whitespace in FO. These allow you to
control how linefeeds and whitespace are output.

11.1 Linefeeds and carriage returns

A linefeed is a character with ASCIl code 10, or Unicode code point U+000A. This is
different to a carriage return which has ASCIl code 13. Ibex acts on linefeeds, not on
carriage returns. Carriage returns are ignored during PDF creation.

11.2 Default treatment of linefeeds and spaces

By default linefeeds and whitespace preceding and following linefeeds are removed
during formatting. Figure 11-1 shows FO which has linefeeds at the end of each line. The
resulting output shown in Figure 11-2 has neither linefeeds nor spaces around the text.
This is the default treatment for text in XSL-FO.

Figure 11-1: <bl ock margi n='2cm >To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
andspaces r to take arms against a sea of troubles,
</ bl ock>

Text with linefeeds

Figure 11-2:

Output with default : : : :)
P . 0 be, or not to be: that is the question: Wether '"tis nobler in the mnd to suffer
handling The slings and arrows of outrageous fortune, O to take arms against a sea of
troubl es,

11.3 Using linefeeds to break text

The linefeed-treatment attribute is used to specify the treatment of linefeeds in text.
This defaults to "ignore" causing linefeeds to be ignored. We can retain the linefeeds by
setting the linefeed-treatment attribute to "preserve". Figure 11-3 shows our example
with this attribute added. Figure 11-4 shows the output from this FO.

Space Handling 67

Ibex PDF Creator Developers Guide

Figure 11-3: <bl ock |i nef eed-treat ment="preserve">To be, or not to be: that is the question:
Whether 'tis nobler in the mnd to suffer

Using :
. The slings and arrows of outrageous fortune,
linefeed-treatment r to take arns against a sea of troubles,
</ bl ock>
Figure 11-4:

. Output with To be, or not to be: that is the question:

linefeeds preserved wet her 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
O to take arnms agai nst a sea of troubles,

11.4 Retaining spaces

The white-space-treatment and white-space-collapse attributes are used to control the
handling of spaces.

If we want to put some formatted code in our documen, Figure 11-5 shows FO for this.

Figure 11-5: <bl ock |i nef eed-treat ment="preserve">
Code example private void swap_byte(ref byte x, ref byte y) {
byte t = x;
X =Y,
y = t;

</ bl ock>

Setting linefeed-treatment = "preserve" we get the output show in Figure 11-6. We have
preserved the linefeeds but all formatting spaces have gone.

Figure 11-6:
Code with linefeeds pri vate void swap_byte(ref byte x, ref byte y) {
but no spacing)k:ytze L
y =t
}

The white-space-collapse attribute controls whether Ibex compresses adjacent white
space characters into a single space. By default any number of adjacent spaces are
compressed into a single space.

The white-space-treatment attribute controls whether Ibex ignores spaces adjacent to
linefeeds. Setting white-space-treatment = "preserve" makes Ibex retain white space
which appears adjacent to linefeeds.

If we set white-space-treatment to "preserve", and white-space-collapse to "false" we
will retain the white spaces around the linefeeds. The FO for this is shown in Figure 11-7,
and the formatted output is shown in Figure 11-8.

68 Space Handling

Ibex PDF Creator

Developers Guide

Figure 11-7: <bl ock
FO to retain spaces |I'i nef eed-treat ment =" preserve"

and linefeeds whi t e- space-t r eat nent =" pr eser ve"
whi t e- space- col | apse="fal se"
>
private void swap_byte(ref byte x,

byte t = x;
X =y;
y =t
</ bl ock>
Figure 11-8:
Output with private void swap_byte(ref byte x,
linefeeds but no Syt_eyF =X
spacing y = t

11.5 Non-breaking spaces

ref bytey) {

ref bytey) {

Unicode defines the code point U+00A0 called NO-BREAK SPACE. This can be used to
insert a space between words without allowing a line break to occur between the

words. Ibex treats two words separated by a U+00A0 as a single word.

The non-breaking space can be inserted into XML using the
o0; entity.

The example in Figure 11-9 shows a block used in a table header. It contains the three
words "Score per 100". The default formatting is shown in Figure 11-10. If we want to
move the word "per" to the next line to keep it with the "100", we replace the space
between "per" and "100" with a non-breaking space. This will prevent Ibex breaking the
line between the "per'" and "100" words.

Figure 11-11 shows the FO with a non-breaking space and Figure 11-12 shows the resulting

output.

Figure 11-9: <bl ock- cont ai ner wi dt h="2. 8cni >
FO withouta <block border="1pt solid bl ack"

paddi ng="3pt" text-align="center">

non-breaking space Score per 100
</ bl ock>
</ bl ock- cont ai ner >

Figure 11-10:
Output without a
non-breaking space

Score per
100

Figure 11-11: <f 0: bl ock- cont ai ner wi dt h="2. 8cni >

FO with <f o: bl ock border="1pt solid bl ack"

paddi ng="3pt" text-align="center">

non-breaking space Scor e per 100
</ fo: bl ock>
</ f o: bl ock- cont ai ner >

Figure 11-12:
Output with a
non-breaking space

Scor e
per 100

Space Handling 69

70 Space Handling

Chapter 12

Colors

XSL-FO defines various attributes for managing color. By default a block is displayed with
the foreground color (that is the text) being black and the background color being
white.

Colors are most commonly expressed using the RGB color scheme, where there are
three parts to a color: red, green and blue. Ibex also supports the CMYK color scheme
commonly used in the printing industry.

12.1 Text color

The color of text is specified using the color attribute. Figure 12-1 shows a simple
example of some FO to make text blue. The output is shown in Figure 12-2.

Figure 12-1: <bl ock col or ="bl ue" >
FO for blue text 1© be, or not to be: that is the question:
</ bl ock>

Figure 12-2:
Blue text

The resulting text will be blue like this

12.2 Background color

The background color of any element is defined using the background-color attribute.
Figure 12-3 shows FO for a block with a gray background. The output from this is shown
in Figure 12-4.

Figure 12-3: <bl ock backgr ound- col or ="gray" >
FO for gray To be, or not to be: that is the question:

</ bl ock>
background

FIBUre 124 the resulting text will have a gray background like this

Gray background

Colors 71

Ibex PDF Creator Developers Guide

12.3 Available colors

The value used for the color and background-color attributes can be a predefined color
such as "red", an RGB color defined using a hex value such as "#eeffdd" or a CMYK color.

12.3.1 Predefined colors

XSL-FO uses the list of colors defined for HTML 4.0, which contains these values:

aqua
black ibex
blue ibex
fuchsia ibex
gray ibex
green ibex
lime
maroon ibex
navy ibex
olive ibex
purple ibex
red ibex
silver
teal ibex
white
yellow

12.3.2 Hexadecimal RGB colors

A color can be defined as a string of six digits preceded by a "#" character. The first two
digits define the red component of the color, in a range from o to 255. The second two
digits define the green component and the last two digits define the blue component.
This is the same scheme for defining colors as is used in HTML.

12.3.3 CMYK colors

CMYK colors are four-part colors using values for cyan, magenta, yellow and black
respectively. The CMYK system is subtractive, meaning that higher values mean less
color, unlike RGB where higher values mean more color. CMYK colors are used in the
printing industry to define a color which will appear the same across all media. Typically
a color defined using RGB will not appear exactly the same on the screen and on a

72 Colors

Ibex PDF Creator Developers Guide

printed page, or even on two different computer screens. CMYK colors are used to
ensure that colors are the same on screen and on the printed page.

PDF files are usually created with single color scheme. You would not usually mix CMYK
and RGB colors in one document. Note that when creating a CMYK PDF file any images
included in the document should be in CMYK format.

A CMYK color is defined using the rgb-icc() function. This takes eight parameters. The
first three define the red, green and blue components of a fallback RGB color, the fourth
defines the color profile name, and the last four define the four parts of the CMYK color.
The color profile must have been declared in the declarations formatting object using a
color-profile element.

Figure 12-5 shows an example of the rgb-icc() function.

Figure 12-5: <bl ock col or="rgb-icc(0, 0, 0, cnyk, 0.7,0.3,0.3,0.4)">

K : incnyk .5,.5 .50
The rgb-icc function </ bl ock>

In Figure 12-5 the three components of the fallback RGB color are zero. This is normal
because we are creating a CMYK PDF file and will not be using any fallback RGB colors.
The color profile name is "cmyk". Ibex requires that the color profile name be "cmyk"
when creating a CMYK color.

A complete document using the CMYK color space is shown in Figure 12-6. This shows
how to use the declarations and color-profile elements to define a color profile.

Figure 12-6: <?xni versi on="1. 0" encodi ng="UTF-8"?>
FO for a CMYK PDF <root xm ns="http://ww. w3. org/ 1999/ XSL/ For mat " >
. <l ayout - mast er - set >
file <si npl e- page- mast er nast er - nane="page" >
<r egi on- body margi n="1i n"
regi on- nane="body"/ >
</ si npl e- page- mast er >
</ | ayout - nast er - set >

<decl arati ons>
<col or-profile src="src"
col or-profil e-name="cnyk"/>
</ decl arati ons>

<page- sequence master-reference="page">
<fl ow fl ow nanme="body" >
<bl ock col or="rgb-icc(0, 0, O, cnyk, 0.7,0.3,0.3,0.4)">
incnyk .5 .5,.5,0
</ bl ock>
</fl ow>
</ page- sequence>
</root >

12.3.4 PDF/X color profiles

Ibex can create PDF files which conform to the PDF/X standard. These files can include
embedded color profiles, used to define a common color scheme across different
devices.

Color profiles are loaded from files on disk and included in the PDF file. Some color
profiles are very large (i.e. > 500k) and can result in large PDF files.

Colors 73

Ibex PDF Creator Developers Guide

Loading a color profile from a file on disk is an Ibex extension. The name of the color
profile file is specified using the color-profile-file-name attribute of the ibex:pdfx
element, as shown in Figure 12-7 below.

Figure 12-7: <?xm versi on="1. 0" encodi ng="UTF- 8" ?>
<root xm ns="http://ww. w3. org/ 1999/ XSL/ For mat "
FOforaPDFlerﬂns:ibex:"http:IIV\MM/.xmpdf.con12003/ibex/Format">
showing the Ioading <| ayout -mast er - set >
of a color profile ~ <si npl e- page- master nast er - name="page” page-w dt h="20cnf >
<r egi on- body regi on- nane="body" margi n="3cn' reference-orientation="0"/>

</ si npl e- page- nast er >
</l ayout - nast er - set >

<i bex: pdf x col or-profile-file-name="col orprofil es\ USWebCoat edSWOP. i cc"
out put - condi ti on="TRO01 SWOP/ CGATS"/ >

<page- sequence naster-reference="page">
<flow fl ow name="body" >

<bl ock font="10pt arial ">
hello world
</ bl ock>
</fl ow>

</ page- sequence>
</root >

74 Colors

Chapter 13

Lists

Lists are created using the list-block element. A list-block in XSL-FO is an area of content
divided into two columns.

A simple list-block is shown in Figure 13-1. The list created by this FO is shown in
Figure 13-2.

Figure 13-1: <l i st - bl ock provi si onal - di st ance- bet ween-starts=". 5cnf
FO for a list provi si onal -1 abel - separation="0. lcni >
<list-itenpr
<list-itemlabel end-indent="Iabel-end()">
<bl ock font='8pt arial'>● </ bl ock>
</list-item]l abel >
<list-itembody start-indent="body-start()">

<bl ock>
i tem one
</ bl ock>

</list-item body>
</list-itemp
<list-itenp
<list-itemlabel end-indent="1Iabel-end()">
<bl ock font='8pt arial'>● </ bl ock>
</list-item]| abel >
<list-itembody start-indent="body-start()">

<bl ock>
itemtwo
</ bl ock>

</list-item body>
</list-itenmp
</1ist-bl ock>

Figure 13-2: =
Alist
(]

item one

itemtwo

Features of lists include:

o the list-block is a block-level element which contains the whole list.

e the provisional-distance-between-starts attribute on the list-block defines the
distance between the start of the label and the start of the body.

e the provisional-label-separation attribute on the list-block defines the size of the gap
between the end of the label and the start of the body. This gap is created by
reducing the size of the label. For example, if provisional-distance-between-starts is
5c¢m and the provisional-label-separation is 1cm, then the start edges of the label and
body will be 5cm apart, and the label will be 4cm (5¢cm - 1cm) wide.

Lists 75

13.1

Ibex PDF Creator Developers Guide

each item in the list is contained in a list-item element.

each list-item must contain both a list-item-label and a list-item-body. The
list-item-label must come first.

the list-item-label should have the end-indent attribute set to "label-end()". This is a
special function which returns a value derived from provisional-distance-between-
starts and provisional-label-separation.

the list-item-body should have the start-indent attribute set to "body-start()". This is a
special function which returns a value derived from provisional-distance-between-
starts and provisional-label-separation.

both the list-item-label and list-item-body contain one or more block-level elements,
so a list-item-label or list-item-body can contain other block-level elements such as
block, table and list-block.

Bulleted lists

Th

e example in Figure 13-1 also shows how to insert a Unicode character into the FO,

using the syntax ●.

This table shows some common bullet types for lists:
Unicode Result

• .

‣ >

● o

○ @

&H#x25A0; L

&H#HXx25A1; O

◆ .

◇, ©

76

Lists

Figure 13-3:
Error message if
bullet not in font

Ibex PDF Creator Developers Guide

Note that what is displayed in the document depends on whether the font you are using
contains the specified character. If the font does not contain the specified character you
will see a warning message like the one in Figure 13-3.

war ni ng: 380 No gl yph index found for code point 2023 in font Arial M

Lists 77

78 Lists

Chapter 14

Tables

A table in XSL-FO is an area of content divided into rows and columns. A table is created
with the table element.

A FO for a simple table is shown in Figure 14-1 and the output it creates is shown in
Figure 14-2. This shows the basic structure of a table element containing table-body,
table-row and table-cell elements.

Figure 14-1: <t abl e>
FOforasimple2x2 <tabl e-body>
<t abl e-r ow>
table <tabl e-cel |l border="1pt solid blue" paddi ng="2pt">
<bl ock>row 1 col um 1</ bl ock>
</table-cell>
<tabl e-cell border="1pt solid blue" paddi ng="2pt">
<bl ock>row 1 col um 2</bl ock>
</table-cell>
</ tabl e-row>
<t abl e-row>
<tabl e-cel|l border="1pt solid blue" paddi ng="2pt">
<bl ock>row 2 col um 1</ bl ock>
</tabl e-cell>
<tabl e-cell border="1pt solid blue" paddi ng="2pt">
<bl ock>row 2 col um 2</bl ock>
</table-cell>
</t abl e-row>
</t abl e- body>

Figure 14-2:

row 1 colum 1 row 1 colum 2

The simple 2 x 2 table
row 2 colum 1 row 2 colum 2

The padding and border attributes are not inherited from containing elements, so are
best defined on the table-cell elements.

14.1 Cell padding

Padding is the amount of space that appears between the inside edge of the border of a
cell and the outside edge of the content of the cell. Padding is specified by the padding
attribute. The default amount of padding is 'opt'. Figure 14-3 shows a table with two
cells. The first cell has padding="1pt" and the second has padding="5pt". Padding is
almost always used to avoid having the content too close to the cell borders.

Tables 79

Ibex PDF Creator Developers Guide

Figure 14-3:

this cell has padding set to '1lpt' so : : ' '
FO showing cells . this cell has padding set to '5pt' so the
& the text is close to the edges of the | .\ 'S’ 1ot so close to the edges of the

with different [cel | cel |
padding

The padding attribute sets padding for all four sides of the cell. Individual sides can be
set using the padding-left, padding-right, padding-top and padding-bottom attributes.

The padding attribute also supports a shorthand format where:

e if one value is specified (padding="2pt") the same value will apply to all four sides;

* if two values are specified (padding="2pt 3pt") the first value will apply to the top
and bottom edges, the second value to the left and right edges;

» if three values are specified (padding="2pt 3pt 1pt") the first value will apply to the
top edge, the second to the left and right edges, and the third to bottom edge;

e if four values are specified (padding="2pt 3pt 1pt opt") these will apply to top,
right, bottom and left edges in that order.

14.2 Cell background color

The background color of a cell is specified using the background-color attribute. This
supports the same predefined colors as CSS and the use of hex values such as "#33ffcc".
The background color of the cell extends to the inside edge of the border, which means
that the area specified by the padding attribute is colored by the background color. This
is shown in Figure 14-4 where the second cell has the attribute background-color =

"#dddddd".
Figure 14-4:
Cell with background :hi ,slcte,l I hatshpa;jdi ?g. Set | this cell has padding set to '5pt’ so the
color set Io pt tsﬁ 3 ex fltsh text is not so close to the edges of the
e :)Ise 2 S GeEes e S cell. The background col or covers the
8 paddi ng.

If you do not want the background to extend to the edge of the padding, specify the
background-color attribute on the contents of the cell (i.e. the block elements) rather
than on the table-cell. An example FO for this is shown in Figure 14-5 and the resulting
output appears in Figure 14-6.

80 Tables

Ibex PDF Creator Developers Guide

Figure 14-5: <t abl e>
FO setting the ~ <tabl e-body>
<t abl e-r ow>
background color on <tabl e-cel|l border="1pt solid blue' padding="1pt'>
ablock <bl ock>
this cell has padding set to '1pt' so the text is close to the edges of
the cell
</ bl ock>
</tabl e-cell>
<tabl e-cell border="1pt solid blue' paddi ng='5pt"
backgr ound- col or =' #dddddd' >
<bl ock background- col or =' #dddddd' >
this cell has padding set to '5pt' so the text is not so close to the
edges of the cell
</ bl ock>
</table-cell>
</tabl e-row>
</ t abl e- body>

Figure 14-6:

Cell with background this cell has padding set to
"1pt' so the text is close to
the edges of the cell

this cell has padding set to '5pt’
so the text is not so close to the
edges of the cell

color on the block
element

14.3 Cell background images

An image can be used as the background to a cell by specifying the background-image
element, as shown in Figure 14-7. This produces the output shown in Figure 14-8.

Figure 14-7: <t abl e>
: ; <t abl e- body>
FO for using an image <t abl e-1 ows
as a cell background <tabl e-cel| border="1pt solid blue' padding=" 1pt'>
<bl ock>
this cell has padding set to '1pt' so the text is close to the edges of
the cel
</ bl ock>
</table-cell>
<tabl e-cel|l border="1pt solid blue' paddi ng="5pt
background-i mage="url (i bex.jpg)' >
<bl ock>
this cell has a background inage
</ bl ock>
</tabl e-cell>
</tabl e-row>
</t abl e- body>

Figure 14-8:
cetwinimoge 1S CaIT Tae P oG oot To IO 20 (76 | v co | raa backer g
background g i mge ¢ o

As the above example shows, by default the image will be repeated if it is less than the
width of the cell. This can be changed using the background-repeat attribute. If this is
set to ""no-repeat" the output changes to that shown in Figure 14-9.

Figure 14-9:
Using this _ceII has paddi ng set to '1pt' so the this cell a backgr ound
background-repeat = text is close to the edges of the cell i mge h“‘_

'no-repeat’

Tables 81

Ibex PDF Creator Developers Guide

The background image «can be positioned in the cell wusing the
background-position-horizontal and background-position-vertical attributes. The cell in
Figure 14-10 example has background-position-horizontal set to "50%".

Figure 14-10:
Centering the this cell has padding set to "1pt: so the this cell has a gr ound
background image text is close to the edges of the cell i mage ﬂ-

14.4 Implicit and explicit rows

Usually FO files use the table-row element to define which cells are in which rows, as
shown in Figure 14-11.

Figure 14-11: <t abl e>
Tables with cells ~ <t abl e-body>
. . <t abl e-row>
contained in rows <tabl e-cel |l border="1pt solid blue" paddi ng="2pt">
<bl ock>row 1 col um 1</ bl ock>
</table-cell>
<tabl e-cel | border="1pt solid blue" paddi ng="2pt">
<bl ock>row 1 col um 2</bl ock>
</table-cell>
</tabl e-row>
<t abl e-r ow>
<tabl e-cell border="1pt solid blue" paddi ng="2pt">
<bl ock>row 2 col um 1</ bl ock>
</tabl e-cell >
<tabl e-cell border="1pt solid blue" paddi ng="2pt">
<bl ock>row 2 col um 2</bl ock>
</tabl e-cell>
</tabl e-row>
</t abl e- body>

It is possible to dispense with the table-row element and have the table-body contain
table-cell elements directly. In this case any cell can have the ends-row attribute set to
"true", which causes a new row to be started containing the next cell. This approach is
sometimes easier to use when generating the FO using XSLT.

Figure 14-12 shows what the above FO would look like if we changed it to use implicit
rows. The output from this appears in Figure 14-13 below.

Figure 14-12: <t abl e>
: <t abl e- body>
FOforatéwe\Nnh <tabl e-cell border="1pt solid blue' paddi ng='2pt'>
implicit rows <bl ock>row 1 col umm 1</ bl ock>
</table-cell>
<tabl e-cell border="1pt solid blue' paddi ng="2pt
ends-row='true' >
<bl ock>row 1 col um 2</ bl ock>
</table-cell>
<tabl e-cel |l border="1pt solid blue' paddi ng='2pt"'>
<bl ock>row 2 col um 1</ bl ock>
</table-cell>
<tabl e-cel |l border="1pt solid blue' paddi ng='2pt"'>
<bl ock>row 2 col um 2</ bl ock>
</table-cell>
</t abl e- body>

82 Tables

Ibex PDF Creator Developers Guide

Figure 14-13:
S ... |lrow 1 colum 1 row 1 colum 2
Table with implicit
rows |7 W 2 colum 1 row 2 colum 2

14.5 Table columns

The table-column element is used to set the column width and other characteristics of a
table column. A table-column element has an associated column number which
determines which column the table-column element refers to. This column number is
either implied (with the first table-column element applying to the first column, the
second to the next etc.), or explicitly set using the column-number attribute.

A single table-column element can be used to define the style of multiple columns by
using the number-columns-spanned attribute.

Figure 14-14 shows the FO for a table with two table-column elements, which apply to
the first and second columns. In this case they set the column widths (to 30% and 70%),
and the give the second column a shaded background. The output created from the FO
appears in Figure 14-15.

Figure 14-14: <t abl e>
. <t abl e- col um col um-wi dt h="30% />
FO using table-column <t abl e- col um col um-wi dt h="70%
elements backgr ound- col or =" #dddddd' / >
<t abl e- body>
<t abl e-row>
<tabl e-cell border="1pt solid blue' padding='2pt'>
<bl ock>row 1 col um 1</ bl ock>
</table-cell>
<tabl e-cel| border="1pt solid blue' padding='2pt'>
<bl ock>row 1 col um 2</bl ock>
</table-cell>
</t abl e-row>
<t abl e-r ow>
<tabl e-cel |l border="1pt solid blue' paddi ng='2pt"'>
<bl ock>row 2 col um 1</ bl ock>
</tabl e-cell>
<tabl e-cel |l border="1pt solid blue' paddi ng='2pt"'>
<bl ock>row 2 col um 2</ bl ock>
</tabl e-cell>
</t abl e-row>
</ t abl e- body>

Figure 14-15:
Table with defined
column widths

row 1 colum 1 row 1 colum 2

row 2 colum 1 row 2 colum 2

Some cell attributes such as background color are determined using attributes from the
cell itself and from the other elements of the table structure. The order of precedence in
determining cell characteristics such as background-color is table-cell, table-row,
table-body, table-column and finally table.

14.6 Proportional column widths

Columns can be allocated widths which are proportional to the widths of other columns.
For example, if we have two columns and want to give the first column twice the width

Tables 83

Ibex PDF Creator Developers Guide

of the second, we can specify column widths using the proportional-column-width()
function as shown in Figure 14-16. The total of the values used in the
proportional-column-width() functions is 3 (2+1), so the first column will gave 2/3 of the
width and the second 1/3. The output from this FO appears in Figure 14-17.

Figure 14-16: <t abl e>
; : <t abl e- col um
FO using proportional col um-wi dt h=' proportional -col um-w dth(2)'/>
column widths <t apl e- col um
col um-w dt h="proportional - col um-wi dt h(1)
backgr ound- col or = #dddddd' / >
<t abl e- body>
<t abl e-r ow>
<tabl e-cel | border="1pt solid blue' padding='2pt'>
<bl ock>row 1 col um 1</ bl ock>
</tabl e-cell>
<tabl e-cel| border="1pt solid blue' padding='2pt'>
<bl ock>row 1 col um 2</ bl ock>
</table-cell>
</tabl e-row>
<t abl e-r ow>
<tabl e-cell border="1pt solid blue' paddi ng='2pt'>
<bl ock>row 2 col um 1</ bl ock>
</tabl e-cell>
<tabl e-cell border="1pt solid blue' paddi ng='2pt'>
<bl ock>row 2 col um 2</bl ock>
</tabl e-cell>
</ tabl e-row>
</t abl e- body>

Figure 14-17:
Output from

row 1 colum 1 row 1 colum 2

row 2 colum 1 row 2 colum 2

proportional width
example

14.7 Spanning columns and rows

The number of columns which a cell spans is set by the number-columns-spanned
attribute. An example FO for this is shown in Figure 14-18. In this example the first cell of
the first row spans two columns. The output from this FO appears in Figure 14-19.

Figure 14-18: <t abl e>
; <t abl e- col utm col um-wi dt h="30%/ >
FO for cell spanning 2 <t abl e- col um col um-w dt h="70%
columns backgr ound- col or =" #dddddd" / >
<t abl e- body>
<t abl e-r ow>
<tabl e-cel| border="1pt solid blue" paddi ng="2pt"
nunber - col ums- spanned="2">
<bl ock>row 1 col um 1</ bl ock>
</table-cell>
</t abl e-row>
<t abl e-r ow>
<tabl e-cel | border="1pt solid blue" paddi ng="2pt">
<bl ock>row 2 col um 1</ bl ock>
</table-cell>
<tabl e-cel | border="1pt solid blue" paddi ng="2pt">
<bl ock>row 2 col um 2</ bl ock>
</table-cell>
</t abl e-row>
</t abl e- body>

84 Tables

Figure 14-19:
Cell spanning two
columns

Figure 14-20:
FO for cell spanning
two rows

Figure 14-21:
Output for cell
spanning two rows

14.8

Ibex PDF Creator Developers Guide

row 1 colum 1

row 2 colum 1 |row 2 colum 2

The number of rows which a cell spans is set by the number-rows-spanned attribute.

Example FO for this is shown in Figure 14-20. In this example the first cell of the first row
spans two rows. The output from this FO appears in Figure 14-21.

<t abl e>
<t abl e- col um col um-w dt h=" 30% />
<t abl e- col utm col um-wi dt h=" 70%
backgr ound- col or =" #dddddd' / >
<t abl e- body>
<t abl e-r ow>
<tabl e-cell border="1pt solid blue' paddi ng="2pt
nunber - r ows- spanned=" 2' >
<bl ock>row 1 col um 1</ bl ock>
</tabl e-cell>
<tabl e-cel| border="1pt solid blue' padding='2pt'>
<bl ock>row 1 col um 2</bl ock>

</tabl e-cell>
</tabl e-row>
<t abl e-r ow>

<tabl e-cell border="1pt solid blue' paddi ng='2pt'>

<bl ock>row 2 col um 2</bl ock>

</tabl e-cell>

</tabl e-row>
</t abl e- body>

row 1 colum 1 row 1 colum 2

row 2 colum 2

Cell separation

XSL-FO has two ways of processing the borders of adjacent cells depending on the value
of the border-collapse attribute on the table.

If border-collapse="collapse", which is the default, there is no gap between cells and the
borders of adjacent cells are merged (or "collapsed") to get a single border shared by
both cells. The rules for combining borders are explained in the XSL-FO specification.
Broadly speaking the widest border will be used. This is called the collapsed border
model.

If border-collapse="separate" adjacent borders are not merged. A gap can be inserted
between adjacent borders using the border-spacing attribute. The border-spacing
attribute can have one or two values. If one value is specified (for instance
border-spacing="1mm") the vertical and horizontal spacing between cells is set to this
value. If two values are specified separated by a space (for instance
border-spacing="1mm 3mm') the horizontal separation is set to the first value and the
vertical separation is set to the second. This is called the separated border model.

The following examples use a table with one row containing two cells. The first cell has a
bottom border, the second does not. The table also has a bottom border.

In the separate border model the border from the first cell will be drawn before the
border of the table as shown in Figure 14-22.

Tables 85

Ibex PDF Creator Developers Guide

Figure 14-22: . .
this cell has this cell does

Cells with separate a bottom not have a bottom
borders bor der bor der
e

In the collapsed border model the border from the first cell will be merged with the
border of the table and a single border will be drawn as shown in Figure 14-23.

Figure 14-23: - -
this cell has this cell does
Cell border collapsed a bottom not have a bottom

with table border bor der bor der

If we add an inner border to each cell we can see this with the separate model, as shown
in Figure 14-24.

Figure 14-24: . .
this cell has this cell does
Separate cell and a bottom not have a

table borders bor der bot t om bor der

With the collapsed border model the border between the two cells will be half the width
it is in the separate model, as shown in Figure 14-25.

Figure 14-25: . .
this cell has this cell does
Collapsed borders a bottom not have a bottom

bor der bor der

Figure 14-26 shows an example of a table with separate borders. Note how the

border-spacing on the previous table sets the space between cells only, not the space

between the cell and the table border. This space can be set using padding. If we add
padding="2mm" to the table we get the layout shown in Figure 14-27.

Figure 14-26:

Table with separate cel | one cel | two

borders

cell three cell four

Figure 14-27:

Cells separated from
the table borders by |ce| | one | |ce| | two |
padding

|ce|| three ||ce|| four |

14.9 Table headers

Table headers are created using the table-header element. The table-header should
appear inside the table element after any table-column elements and before any
table-body elements. The table-header element is similar in structure to a table-body
element in that it contains table-row elements.

86 Tables

Figure 14-28:
Simple table with
header

Figure 14-29:
Table with simple | Heading
header

14.10

Ibex PDF Creator Developers Guide

This section describes the behavior of table headers which do not change. Headers
which can have different content on different pages are described later in this chapter in
the section on continuation markers on page 89.

Figure 14-28 shows the FO for a simple table with a one row header and two content
rows. The output created by the FO appears in Figure 14-29.

<t abl e>
<t abl e- col um col um-wi dt h="100%/ >
<t abl e- header >
<t abl e-r ow>
<tabl e-cell border="1pt solid bl ack" paddi ng="5pt">
<bl ock>Headi ng</ bl ock>
</table-cell>
</t abl e-row>
</t abl e- header >
<t abl e- body>
<t abl e-r ow>
<tabl e-cel |l border="1pt solid bl ack" paddi ng="5pt">
<bl ock>r ow 1</ bl ock>
</tabl e-cell>
</t abl e-row>
<t abl e-row border="1pt solid bl ack" paddi ng="5pt">
<t abl e-cel | >
<bl ock>r ow 2</ bl ock>
</table-cell>
</t abl e-row>
</t abl e- body>
</ tabl e>

row 1

row 2

Table headers are repeated at the top of the table after each page break. This is the
default. To prevent the table header appearing on pages after the first, specify
table-omit-header-at-break = "true" on the table element.

Table footers

Table footers are created using the table-footer element. The table-footer should appear
inside the table element after any table-column and table-header elements and before
any table-body elements. The table-footer element is similar in structure to a table-body
element in that it contains table-row elements.

It is a common error to place the table-footer element at the end of the table, after the
table-body elements. It must be placed before the table-body elements because Ibex
may start rendering the table to PDF before the whole table has been read from the FO
file.

This section describes the behavior of table footers which do not change. Footers which
can have different content on different pages are described later in this chapter in the
section on continuation markers on page 89.

Tables 87

Ibex PDF Creator Developers Guide

Figure 14-30 shows the FO for a simple table with a one row header and footer and two
content rows. The output created by the FO appears in Figure 14-31.

Figure 14-30: <t abl e>
FO for simple table <t abl e- col um col um-wi dt h="100%/ >
<t abl e- header >
with headerand <t abl e-r ow>
footer <tabl e-cel | border="1pt solid bl ack" paddi ng="5pt">
<bl ock>Headi ng</ bl ock>
</table-cell>
</t abl e-row>
</ t abl e- header >
<t abl e-f oot er >
<t abl e-row>
<t abl e-cel |l border="1pt solid black" paddi ng="5pt">
<bl ock>Foot er </ bl ock>
</tabl e-cell>
</t abl e-row>
</t abl e-f oot er>
<t abl e- body>
<t abl e-r ow>
<tabl e-cel|l border="1pt solid bl ack" paddi ng="5pt">
<bl ock>row 1</ bl ock>
</table-cell>
</t abl e-row>
<t abl e-row border="1pt solid bl ack" paddi ng="5pt">
<t abl e-cel | >
<bl ock>r ow 2</ bl ock>
</tabl e-cell>
</t abl e-row>
</t abl e- body>
</t abl e>

Figure 14-31:
Table with simple | Headi ng
header and footer

row 1

row 2

Foot er

Table footers are repeated at the bottom of the table before each page break. This is the
default. To prevent the table footer appearing on pages other than the last, specify
table-omit-footer-at-break = "true" on the table element.

14.11 Behavior at page breaks

14.11.1 Repeating headers

Table headers are repeated at the top of the table after each page break. This is the
default. To prevent the table header appearing on pages after the first, specify
table-omit-header-at-break = "true" on the table element.

88 Tables

Ibex PDF Creator Developers Guide

14.11.2 Repeating footers

Table footers are repeated at the bottom of the table before each page break. This is the
default. To prevent the table footer appearing on pages other than the last, specify
table-omit-footer-at-break = "true" on the table element.

14.11.3 Repeating table borders

Table borders by default do not repeat at a break in the table, so the top border of a
table is rendered only on the first page the table is on and the bottom border is
rendered only on the last page.

To make the table bottom border repeat at each page break it is necessary to specify
border-after-width.conditionality = "retain" on the table element.

To make the table top border repeat at each page break it is necessary to specify
border-before-width.conditionality = "retain"” on the table element.

14.12 Table continuation markers

Table continuation markers provide a way of dynamically changing the header and
footer on a table so that different content can be displayed on different pages. A typical
use of this feature is to put the words "continued on next page" in the footer of a table
on all pages except the last.

Here we examine how the "continued on next page" requirement can be satisfied using
Ibex. The approach taken by XSL-FO has two parts, implemented using the marker and
retrieve-table-marker elements. First a retrieve-table-marker element is added to the
footer. When the PDF is created this element will be replaced by the contents of one of
the marker elements which has the same class name. The marker element which
appears in the footer depends on the values of the attributes on the
retrieve-table-marker.

The footer for this example is shown in Figure 14-32. As the PDF file is created the
contents of the marker element with marker-class-name = "continued" will be located
and inserted into the table-footer element. The content of the marker element must be
valid FO elements for their location in the table-footer. In this example the retrieved
elements go directly under the table-footer element, so the elements retrieved must be
table-row elements.

Figure 14-32: <t abl e-f oot er >
FOfor <ret ri eve-tabl e-marker
. retrieve-cl ass-name="conti nued"
retrieve-table-marker retrieve-position-within-table="first-starting"
retrieve-boundary-within-tabl e="page"/>
</t abl e-f oot er>

Typically, there will be more than one marker element which has the marker-class-name
= "continued". If this is not the case then the footer content will never change. The
retrieve-position attribute specifies which marker to retrieve. In this example we want
the first marker which appears on the page, so we use retrieve-position =

Tables 89

Ibex PDF Creator Developers Guide

"first-starting-within-page". We also specify retrieve-boundary = "table" so any marker
from any part of the table which has been output to PDF can be retrieved. Other options
are detailed later in this section.

Conceptually, Ibex looks at every row in the table which has been output to the PDF file
(including rows on the current page), collects all the markers associated with each of
those rows and selects one to go into the footer. Markers associated with rows which
are not on either the current page or prior pages are not considered. It is possible to
have a different marker associated with every row in the table. This is useful for
situations such as like rendering a running total.

The second part of the process is to define one or more marker elements. In this case
our marker elements are associated with table-row elements. The first table-row has a
marker element which specifies the "continued on next page" text. The contents of this
marker will be retrieved for all pages except the last.

The last row of the table has an empty marker element. The content of this (that is to
say no rows) will be what appears in the footer on the last page of the table. The marker
from the first row is shown in Figure 14-33 and the marker from the last row is shown in

Figure 14-34.

Figure 14-33: <t abl e- r ow>
FO for marker in the <mar ker marker-cl ass-nane="conti nued">
<t abl e-row>
first table row <t abl e-cel | >
<bl ock>conti nued on next page/<bl ock>
</table-cell>
</t abl e-row>
</ mar ker >

<t abl e-cel | >

<bl ock>row 1 cell 1 /<bl ock>
</table-cell>
</t abl e-row>

Figure 14-34: <t abl e- r ow>
FO for marker in the <mar ker mar ker - cl ass- nane="conti nued"/ >
<t abl e-cel | >
last tablerow <p| ock>row (1 ast) cell 1 /<block>
</table-cell>
<t abl e-r ow>

14.13 Aligning columns at the decimal point

Ibex can align the contents of cells in a column on the decimal point by specifying

text-align="." on each fo:table-cell in the column. This can be done explicity on each
fo:table-cell, or to make things easier to maintain it can be done by specifying
text-align="." on the fo:table-column and text-align="from-table-column" on each
fo:table-cell.

Example FO for aligning columns is shown in Figure 14-35 and the resulting output is
shown in Figure 14-36.

90 Tables

Ibex PDF Creator

Developers Guide

Figure 14-35: <t abl e font="10pt arial ">
<t abl e-col um col um-w dt h="50% />
. <t abl e- col um col um-wi dt h="50% text-align="."/>
alignment <t abl e- body>
<t abl e-r ow>
<tabl e-cell border="1pt solid bl ack" paddi ng="3pt"
<bl ock>i bexdl s</ bl ock>
</table-cell>
<tabl e-cell border="1pt solid bl ack" paddi ng="3pt"
text-align="fromtabl e-col um()">
<bl ock>499. 02</ bl ock>
</table-cell>
</ tabl e-row>
<t abl e-r ow>
<tabl e-cell border="1pt solid bl ack" paddi ng="3pt"
<bl ock>Tot al </ bl ock>
</table-cell>
<tabl e-cell border="1pt solid bl ack" paddi ng="3pt"

FO for decimal point

text-align="fromtable-colum()" font-size="18pt">

<bl ock>499. 00</ bl ock>
</table-cell>
</t abl e-row>
</t abl e- body>
</ tabl e>

Figure 14-36: | ibexdls

499.02

Output for decimal Total
point alignment

499.00

Tables

91

92 Tables

15.1

Chapter 15

Images

Images are added to the document using either the external-graphic or
instream-foreign-object elements. The external-graphic element is used to include a file
in JPEG, GIF, TIFF, BMP, SVG or PNG formats. The instream-foreign-object element is
used to include an image defined in Scalable Vector Graphics (SVG) format where the
image SVG is contained within the FO.

The properties used to format the external-graphic and instream-foreign-object
elements are the same.

The size of the image is distinct from the size of the area in which the image is placed.

The height and width attributes on the external-graphic or instream-foreign-object
element specify the size of the area into which the graphic will be placed. If these
properties are not specified they default to an area large enough to contain the image.

The content-width and content-height attributes control the size of the image. These
can be values such as "3cm" or percentages such as "120%". If content-width and
content-height not specified the image defaults to the size in pixels specified in the
image file itself. This means that if you do not specify any of the above attributes the
image will be as large as specified in the image file, and will be placed in an area the
same size.

The dots per inch (dpi) value of the image makes a difference to the image size. Two
images can have the same dimensions in pixels but appear different sizes in the PDF
file. This is because Ibex uses the dpi value to work out the size of the image. An image
which is 300 pixels wide and stored at 300 dpi will be 1 inch wide. The same image
stored at 100 dpi will be 3 inches wide.

An image is an inline element, so for formatting purposes it can be placed in a sentence
surrounded by text and is treated as a single word.

Image basics

The external-graphic element is used to include an image which is in a file external to the
FO file. The name of the file to be included is specified using the src attribute.

Images 93

Ibex PDF Creator Developers Guide

The src attribute is called a uri-specification and must follow the following rules:

A sequence of characters that is "url(", followed by optional white space,
followed by an optional single quote (') or double quote (") character,
followed by a URI reference as defined in [RFC2396], followed by an
optional single quote (") or double quote (") character, followed by optional
white space, followed by ")". The two quote characters must be the same
and must both be present or absent. If the URI reference contains a single
quote, the two quote characters must be present and be double quotes.

This means the following are all valid values for the src attribute:
uri(ibex.jpg)
uri("ibex.jpg")
uri('ibex.jpg")
url(http://www.xmlpdf.com/images/download2.gif)

As the src attribute is a URL, an image which exists on a web server can be downloaded
automatically by Ibex as the PDF file is created. This is common in real estate and catalog
applications and means you do not need to make a copy of an existing image just to get
it into the PDF file. The FO shown in Figure 15-1 will fetch the file download2.gif from
www.xmlpdf.com. The resulting image is shown in Figure 15-2.

Figure 15-1: <pl ock space- bef or e="6pt ">
FO to insert an <ext ernal - graphi ¢ border="1pt solid bl ack"

src="url (http://ww. xm pdf. conli mages/ downl oad2. gi f)"

image fromaweb cont ent - wi dt h="200% cont ent - hei ght =" 2009 / >
server </ bl ock>

Figure 15-2:

Image included from
web server

15.2

The external-graphic element can be used to include image files in PNG, JPEG, TIFF, BMP
and GIF formats. It can also be used to include SVG images held in external files.

The inline-foreign-object is used for loading images from SVG content that is contained
inline in the FO. See SVG Images on page 105.

Making an image fit a specified space

To make an image fit a specified size use the height and width attributes to specify the
size of the external-graphic element, and then use the content-width and content-height
to fit the image to that size.

For example to fit an image into an area 2cm x 2cm, set the width and height attributes
to "2cm" and set the content-width and content-height attributes to "scale-to-fit", as
shown in Figure 15-3.

94 Images

Ibex PDF Creator Developers Guide

Figure 15-3: <f o: ext ernal - graphi c src="url (i nage.j pg)"
Scaling an image hei ght ="2i n" w dt h="2i n"

& & cont ent - hei ght="scal e-to-fit"
content-w dt h="scal e-to-fit"/>

If you only want the image reduced in size to fit the specified area and do not want it
increased in size if it is smaller, specify content-width="scale-down-to-fit". This also
applies to content-height.

If you only want the image enlarged to fit the specified area and do not want it reduced
in size if it is larger, specify content-width="scale-up-to-fit". This also applies to
content-height.

15.3 Clipping

If the image is larger than the area in which it is contained then the image may be
clipped. Figure 15-4 shows an image at its natural size, based on the pixels and dpi values
read from the image file. If we specify the height of the external-graphic element as
2.5cm and specify overflow="hidden", the image will be clipped to this height, as shown
in Figure 15-5.
Figure 15-4:
Image at natural size

Figure 15-5:
Clipped image

Images 95

Ibex PDF Creator uide

If we specify the height of the external-graphic
element as 2.5cm and do not specify
overflow="hidden", the image will not be
clipped to this height, and will overwrite other
content as shown to the right. Because the
image is positioned on the same baseline as text,
the overflow will be at the top of the area
containing the image.

15.4 Image size and alignment

If an image is smaller than the containing area we can control where it appears in that

area using the display-align and text-align attributes. The display-align attribute controls

the vertical alignment, text-align controls the horizontal alignment. By default the image

appears in the top left corner of the inline area created by the external-graphic or
instream-foreign-object element, as shown in Figure 15-6.

Figure 15-6:

Default alignment of

an image

If we specify text-align="center" the image will move to the horizontal center of the

inline area, as shown in Figure 15-7.
Figure 15-7:
Using text-align =
'center’

96 Images

Ibex PDF Creator Developers Guide

If we specify text-align="right" the image will move to the right of the inline area as
shown in Figure 15-8.
Figure 15-8:
Right aligned image

If we specify text-align="center" and display-align="center" the image will move to the

horizontal and vertical center of the inline area, as shown in Figure 15-9.
Figure 15-9:
Vertically and
horizontally
centered image

15.4.1 Leading

Looking at the image in Figure 15-10 you can see a gap between the top of the image and
the border. This is the leading, which appears because the image is treated as a text
element and sits on the baseline. The amount of leading is derived from the font size, so
you can reduce it to zero by setting the font size to zero, by specifying font-size="opt"
on the containing block element. This has been done in Figure 15-11.
Figure 15-10:
Image with leading
above it

Images 97

Ibex PDF Creator Developers Guide

Figure 15-11:
Using with leading
removed

15.5 Image resolution

The resolution of an image in dots per inch (dpi) can be set using the dpi attribute on the
external-graphic element. Setting this attribute overrides the dpi value read from the
image file.

Setting the dpi to a lower value than the one specified in the image will result in smaller
image of lower quality than the original. This is often done to reduce the size of the
image in the PDF file and can result in massive decreases in PDF file size. If you have an
image which is stored at 2400 dpi, and your end user will display it on a 96 dpi screen or
print it on 600 dpi printer, reducing the image dpi to 600 will not effect the appearance
of the image.

Setting the dpi to a value higher than the value read from the image file has no effect.

If for example if we wanted to store an image in the PDF file at 1200 dpi, we would use
the FO shown in Figure 15-12.

Figure 15-12: <bl ock space- bef ore="6pt" >
FO to setimage dpi <€xternal -graphi c border="1pt solid black"
gedp src="url (http://ww:. xm pdf. conl i mages/ downl oad2. gi f)"
cont ent - wi dt h="200% cont ent - hei ght =" 200%
dpi ="1200"/ >
</ bl ock>

The dpi attribute is an Ibex extension. It is not part of the XSL-FO standard.

15.6 Image anti-aliasing

Images are anti-aliased by default. This can be disabled using the ibex:anti-alias attribute
as shown in figure Figure 15-13.

Figure 15-13: <bl ock space- bef ore="6pt">

FO to disable ~ <éxternal - graphic
src="url (http://ww. xnl pdf . conl i mages/ downl oad2. gi f)"

anti-aliasing i bex: anti-alias="fal se"
dpi ="1200"/ >
</ bl ock>

Figure 15-14 shows two images, the left right one has anti-aliasing disabled so the edges
of the image appear more clearly.

98 Images

Ibex PDF Creator Developers Guide

Figure 15-14:
Images with and
without anti-aliasing

The ibex:anti-alias attribute is an Ibex extension. It is not part of the XSL-FO standard.

15.7 Loading an image from memory

Ibex has the facility to load an image which is stored in memory. This permits an
application to dynamically generate an image or to load an image from a database for
inclusion in the PDF file.

The image must be passed to Ibex in a byte array or a Stream (from the System.lO
namespace).

The image must be given a unique identifier by which it can be retrieved during the PDF
creation process. This is done using the addNamedimage() method on the FODocument
object. This method takes two parameters; (1) a string which identifies the image and (2)
the stream or array which contains the image itself.

For example if we had an image in a byte array called "image" and we wanted to give it
the identifier "1029" we would use the code shown in Figure 15-15 to do this.

Figure15-15: byte[] imge = ... dynamically create

C# code to load an
. FODocunent docunment = new FODocunent () ;
image from memory

docunent . addNaned! mage("1029", inmage);

This must be done before calling generate() to create the PDF file.

Within the FO file the image is retrieved from memory using the syntax shown in
Figure 15-16

Figure 15-16: <ext er nal - gr aphi ¢ src="url (dat a: appl i cati on/ i bex-i mage, 1029) "/ >
FO to load an image
from memoryrhe value of the src attribute must be the string "url(data:application/ibex-image,"
followed by the unique identifier which was passed to addNamedIimage().

This syntax for the url attribute conforms to RFC 2397 - The "data" URL scheme (which
can be found at http://www.fags.org/rfcs/rfc2397.html).

Images 99

http://www.faqs.org/rfcs/rfc2397.html

Ibex PDF Creator Developers Guide

15.8 Transparent Images

15.8.1 Transparent GIF images

GIF images which have transparent areas are supported. The FO in Figure 15-17 places
the same transparent GIF image on two different backgrounds. The output from this FO
is shown in Figure 15-18.

Figure 15-17: <bl ock backgr ound- col or ="bl ue" >
FO for transparent o br(e)z{(ir nal - graphic src="url (i bmlogo.gif)" content-hei ght="2cn'/>
image <bl ock backgr ound- col or =" bl ack" >
<external -graphic src="url (ibmlogo.gif)" content-height="2cnm'/>
</ bl ock>

Figure 15-18:
Transparent GIF
images

T}
<l'|
L

THI
I

al'lll

||||||||

15.8.2 Transparent PNG images

PNG images which have transparent areas are supported. The FO in Figure 15-19 places a
transparent PNG image on a white backgrounds. The output from this FO is shown in
Figure 15-20.

Figure 15-19: <bl ock backgr ound- col or ="whi te">
FO for transparent <ext ernal - graphi c src="url (RedbrushAl pha-0. 25. png)" content - hei ght ="2cni'/ >
. </ bl ock>
image

Figure 15-20:
Transparent PNG
image

15.8.3 Transparent images using masking

Ibex can use image masking to make some parts of an image appear transparent. This is
an extension to the XSL-FO standard.

Image masking works by defining colors from the image which should not be displayed.
The PDF viewer will compare each pixel in the image with the mask and not display

100 Images

Ibex PDF Creator Developers Guide

pixels which match the mask, effectively making these pixels transparent and so leaving
visible the content behind the image.

The image mask is defined using the <ibex:mask> element, which must be contained
within an external-graphic element, as shown in Figure 15-21.

Figure 15-21: <ext er nal - graphi ¢ src="url (i xsl.jpg)" z-index=' 10'>
FO to mask animage <i bex: mask

red-m n="255" red-max="255"

green- m n="255" green- nax="255"

bl ue- m n="255" bl ue- max="255"/>
</ ext er nal - gr aphi c>

To use the ibex:mask element you must reference the ibex namespace in your FO as
shown in Figure 15-22.

Figure 15-22: <r oot
Referencing the ibex xm ns: fo="http://ww.w3. org/ 1999/ XSL/ For mat "

xm ns: i bex="http://ww:. xm pdf. conm 2003/ i bex/ For mat " >

namespace

Figure 15-23:
Image placed over

The mask defines the minimum and maximum values for each of the red, green and blue
components of an image. A mask using these values is applicable only to images which
are in RGB format with 24 bits per pixel.

For CMYK images, attributes called c-min, c-max, m-min, m-max, y-min, y-max, k-min and
k-max define the minimum and maximum values for each of the cyan, magenta, yellow
and black components of the image.

The image mask shown above causes any pixel which has red=255, green=255 and
blue=255 to not be rendered. As a pixel with red, green and blue all equal to 255 is white,
this means any white pixels will not be rendered.

Figure 15-23 shows some text over which we have placed an image with red and black
letters on a white background.

This is sone text that will be behind the inmage. This is
sone text that will be behind the image. This is some text

text that will be behind the inmage. This is sone text that wll
be behi nd t he inage. ext that will be behind
the image. This is { M |1 be behind the

image. This is sone IbeX XSL be behi nd the inage.

This is sone text thar—wrr—moe—werrnd the irrage.

If we add a mask to eliminate white pixels the image then appears as shown in
Figure 15-24.

Figure 15-24:
Image with masking This is some text that will be behind the image. This is

sone text that wll mage. This is sone text
that will be behind is sone text that will
be behind the image.| IDEX XSL lext that will be behind
t he i mage.

15.8.4 Transparent Images using SVG

Transparent images can also be implemented by placing a SVG image over the top of
other content. This approach uses the vector SVG renderer introduced in Ibex 2.1.2 and is

Images 101

Ibex PDF Creator Developers Guide

only available when using .NET 1.1 or higher. This is the best approach for transparent
images because (a) there is no background on the SVG image so the best clarity is
achieved, and (b) SVG uses a vector renderer which creates a smaller PDF file than you
would get using a bitmap image.

Figure 15-25 shows the FO to put the word "ibex" over some text. The resulting output is
shown in Figure 15-26.

Figure 15-25: <p| ock- cont ai ner >
FO using SVG to <bl ock- cont ai ner space- bef ore="6pt"
absol ut e- posi ti on="absol ute" top="-1.6cnt
place content over | eft =" 5¢nt >
text <bl ock>
<i nstreamforeign-object z-index="30">
<svg w dt h="315" hei ght ="100"
xm ns="htt p: //ww. w3. or g/ 2000/ svg" >
<text x="30" y="60" fill="blue" stroke="blue"
font-size="61pt" font-style="italic"
style="font-family:arial;stroke-w dth:0.5">
| bex
</text>
</ svg>
</instream foreign-object>
</ bl ock>
</ bl ock- cont ai ner >
</ bl ock- cont ai ner >

Figure 15-26: This is some text which will be behind the imge. This is sone text

Textoverlaid using i ch wi || be behind the inmage. This is sone text which will be
SVGpehind the image. This is sone tEt_whi ch will be behind the inmge.

This is some text which will n ey e. This is sonme text

which will be behind the inmag ext which will be
behind the image. This is so i be behi nd the inage.

15.9 Network credentials used in accessing images
Ibex can retrieve images from HTTP servers as shown in Figure 15-27 below. By default
Ibex will do this using the credentials of the process which is creating the PDF file. If Ibex
is running in an ASP.NET server then the default configuration is that ASP runs as the
ASPNET user. This user does not have permissions to access other servers and so will not
be able to retrieve images from other servers.

Figure 15-27: <bl ock space- bef or e="6pt ">
FO to insert an <ext ernal - graphi ¢ border="1pt solid bl ack"
. src="url (http://ww:. xm pdf. conl i mrages/ downl oad2. gi f)"
image from an HTTP cont ent - wi dt h="200% cont ent - hei ght =" 200% / >
server </ bl ock>

The FODocument object supports the setNetworkCredentials() method. This method
takes 4 parameters, as shown in Figure 15-28.

Figure 15-28: publ i ¢ voi d set Net wor kCr edent i al s(

The string prefix,
. string usernaneg,
setNetworkCredenti string password,
als method string domain)

102 Images

Ibex PDF Creator Developers Guide

The parameters are:

prefix The start of a URL, such as "http://www.xmlpdf.com". Any image URL which
starts with this prefix will use these credentials.

username the username passed to the remote server
password the password passed to the remote server

domain the domain name passed to the remote server

Each call to setNetworkCredentials() is passed a prefix which is compared with image
URLSs to see which set of credentials to use.

For example if your application accesses two HTTP servers using different credentials
your code might look like the code in Figure 15-29. Obviously you would get the
username and password information from somewhere in your application rather than
hard coding them.

Figure 15-29: FODocunent doc = new FODocument ()

Setting credentials . .
doc. set Net wor kCredenti al s("http://ww. xm pdf. conf, "user1", "passwordl", "domai n1");

for different servers goc. set Net wor kCr edent i al s("http: // wamw. i bex4. cont', "user 2", " passwor d2", " domai n2")

Internally Ibex uses the System.Net.WebRequest and System.Net.NetworkCredential
objects to pass credentials to the remote server. If credentials have been passed to Ibex
using the setNetworkCredentials() method a new NetworkCredential object is created
when creating the WebRequest object. SO the actual forwarding of the credentials to
the remote server is all done by the .NET framework.

Calls to setNetworkCredentials() should be made before the generate() method is
called.

15.10 Multi-page TIFF image processing

Ibex has an extension attribute "ibex:page" which is used to specify which page of a
multi-page TIFF image should be included in the PDF file.

FO to place the third page of a multi-page TIFF image is shown in Figure 15-30.

Figure 15-30: <bl ock>
Specifying the page of <external -graphic src="url (' 7pages.tif')" ibex:page="3"/>

</ bl ock>
a multi-page TIFF
image

Images 103

104 Images

16.2

Chapter 16

Scalable Vector Graphics (SVG)
Images

Ibex supports the inclusion of Scalable Vector Graphics (SVG) images in the PDF file. SVG
images retain their vector format inside the PDF file, so will remain precise under high
magnification unlike bitmap images which will be come pixellated.

SVG images are inserted into the document using either the <fo:external-graphic> or
<fo:instream-foreign-object> elements. Images can be included inline like this:

<f o: bl ock border="1pt solid red">
<fo:instreamforeign-object>
<svg xm ns="http://ww. w3. or g/ 2000/ svg" wi dt h="20" hei ght ="20">
<rect w dth="10" hei ght="10" fill="green"/>
</ svg>
</fo:instreamforeign-object>
</ fo: bl ock>

or from an external file like this:

<fo: bl ock border="1pt solid red">
<fo:external -graphic src="url (file.svg)"/>
</ fo: bl ock>

where the external file contains the SVG image like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<svg xm ns="http://ww. w3. or g/ 2000/ svg" w dt h="20" hei ght ="20">
<rect w dth="10" height="10" fill="green"/>

</ svg>

If an image occurs more than once in the document it should be loaded from an external
file so that it is only store in the PDF once.

Namespaces

The SVG image must begin with the <svg> element in the namespace
"http://[www.w3.0rg/2000/svg". Images which do not declare the namespace will not be
included in the PDF.

Scalable Vector Graphics (SVG) images 105

16.3

16.4

16.4.1

16.4.2

Ibex PDF Creator Developers Guide

Image size

The size of the image should be specified using the width and height attributes the outer
<svg> element. These can be absolute measurements such as "3cm" or scalar values
such as "400". Scalar values are assumed to be pixels and are converted to inches based
on 1 pixel = 1/96 inch. Percentages cannot be effectively used; the size of the block
containing the image is determined from the size of the image, at the time the image is
processed the size of the containing block is unknown.

Summary of supported elements

This section briefly documents the degree to which SVG elements are supported in Ibex.
It is not an SVG manual. Information on the SVG specification can be found at
http://[www.w3.0rg/TR/SVG11/expanded-toc.html

Animation of SVG elements using javascript is not supported.

<svg>

The <svg> element is used to define the size and shape of the image (using the width
and height attributes) and to establish a new coordinate system using the viewBox
attribute.

<g>

The <g> element used to move the coordinate system using the transform attribute.
Supported transform operations are:

Operation Effect

translate(x,y) translate the coordinate system x units horizontally and y units
vertically

translate(x) translate the coordinate system x units horizontally and zero
units vertically

matrix(a,b,c,d,e,f) multiply the current transformation matrix by the one specified

scale(x,y) scale the coordinate system x units horizontally and y units
vertically

rotate(angle) rotate the coordinate system angle degrees about the origin

rotate(angle,x,y) rotate the coordinate system angle degrees about the point x,y

skewX(angle) skew the coordinate system angle degrees along the X axis

skewY(angle) skew the coordinate system angle degrees units along the Y axis

Multiple transformations can be performed by placing them one after the other in the
transform attribute, like this:

<g transform="transl ate(10, 20) scal e(2,3) rotate(30)">

Transforms will be applied in the order in which they appear.

106 Scalable Vector Graphics (SVG) images

16.4.3

16.4.4

16.4.5

16.4.6

16.4.7

Ibex PDF Creator Developers Guide

<defs>

The <defs> element is supported as a container for other elements. See <symbol> below
for an example.

<desc>

The <desc> element is ignored.

<title>

The <title> element is ignored.

<symbol>

The <symbol> element is supported. The following image shows an example of
definining a system using <symbol> and retrieving it using <use>.

<?xm version="1.0" standal one="yes"?>
<svg wi dt h="10cn' hei ght ="3cn' vi ewBox="0 0 100 30"
xm ns="http://ww. w3. or g/ 2000/ svg" xm ns: x|l ink="http://ww.w3. org/ 1999/ xl i nk">
<def s>
<synbol id="MSynbol" viewBox="0 0 20 20">
<rect x="1" y="1" w dth="8" hei ght="8"/>
<rect x="11" y="1" w dth="8" hei ght="8"/>
<rect x="1" y="11" w dth="8" hei ght="8"/>
<rect x="11" y="11" wi dth="8" hei ght="8"/>
</ synbol >
</ def s>

<use x="45" y="10" wi dth="10" hei ght="10" xIi nk: href="#MWSynbol " fill="bl ue" />

</ svg>

The <use> element will find the symbol element with id="#MySymbol" and display the
content of this element, which should look like this:

<use>

The <use> element is supported, see above for an example. Note that as this element
uses the xlink:href attribute it is necessary to declare the
xmins:xlink="http://www.w3.0rg/1999/xlink" namespace.

Scalable Vector Graphics (SVG) images 107

16.4.8

16.4.9

16.4.10

Ibex PDF Creator Developers Guide

<image>

The <image> element is supported. This element embeds an image inside the SVG image.
For example this image will display a rectangle and on top of that display the image held
in the file "use_symbol.svg":

<?xm version="1.0"?>
<svg w dt h="4cm' hei ght="2cm' vi ewBox="0 0 200 100"
xm ns: xli nk="http://ww.w3. org/ 1999/ x| i nk"
xm ns="http://ww. w3. org/ 2000/ svg" version="1.1" preserveAspect Rati o="none">

<rect w dt h="300" hei ght="150" stroke="red" stroke-w dth="1" fill="silver"/>
<i mage x="20" y="20" xlink:href="use_synbol.svg" w dth="100" hei ght="100"/>

</ svg>

<switch>

The <switch> element is ignored.

<path>

The <path> element is supported. Internally PDF does not support quadratic Bézier
curves so they are converted to cubic Bézier curves. The following SVG draws a simple
curve with marked end points:

<?xm version="1.0" standal one="no"?>
<svg w dt h="6cn hei ght="5cn' vi ewBox="0 0 1200 600"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<rect x="1" y="1" w dth="1198" hei ght="598" fill="none" stroke="bl ue"
stroke-w dth="1" />

<pat h d="M200, 300 Q400,50 600,300 T1000, 300" fill="none" stroke="red"
stroke-w dth="5" />
<l-- End points -->
<g fill="black" >
<circle cx="200" cy="300" r="10"/>
<circle cx="600" cy="300" r="10"/>
<circle cx="1000" cy="300" r="10"/>

</ g>
<l-- Control points and lines fromend points to control points -->
<g fill="#888888" >

<circle cx="400" cy="50" r="10"/>
<circle cx="800" cy="550" r="10"/>
</ g>
<pat h d="M200, 300 L400, 50 L600, 300
L800, 550 L1000, 300"
fill="none" stroke="#888888" stroke-w dth="2" />
</ svg>

108 Scalable Vector Graphics (SVG) images

Ibex PDF Creator Developers Guide

The curve looks like this:

16.4.10.1 Path line join shapes

The shape where a path changes direction is set with the stroke-linejoin attribute.
Possible values are:

Value Shape

stroke-linejoin="miter" ﬁ
StrOkQ-linEJOln="bevel" ﬁ
Stroke-"ne]Oln:"round" ﬁ

16.4.11 <style>

The <style> element is currently implemented to some extent in .Net. In .Net the class
attribute can be used in conjunction with a style to apply that style to an element.

16.4.12 <rect>

The <rect> element is supported. A simple rectangle can be drawn like this:

<svg xm ns="http://ww. w3. or g/ 2000/ svg" w dt h="400" hei ght="120" >
<rect x="10" y="10" w dt h="100" hei ght="100" fill ="none" stroke="red"/>
</ svg>

resulting in this image:

Scalable Vector Graphics (SVG) images 109

Ibex PDF Creator Developers Guide

16.4.13 <circle>

The <circle> element is supported. A simple circle can be drawn like this:

<svg xm ns="http://ww. w3. or g/ 2000/ svg" w dt h="400" hei ght ="120" >
<circle cx="50" cy="50" r="30" fill="none" stroke="red"/>
</ svg>

resulting in this image:

16.4.14 <ellipse>

The <ellipse> element is supported. A simple ellipse can be drawn like this:

<svg xm ns="http://ww. w3. or g/ 2000/ svg" w dt h="400" hei ght ="200" >
<el l'i pse cx="100" cy="100" rx="75" ry="50" fill="none" stroke="black"/>
</ svg>

resulting in this image:

110 Scalable Vector Graphics (SVG) images

16.4.15

16.4.15.1

16.4.15.2

Ibex PDF Creator Developers Guide

<line>

The <line> element is supported. A simple line can be drawn like this:

<svg xm ns="http://ww. w3. or g/ 2000/ svg" w dt h="400" hei ght ="400" >
<line x1="10" y1="10" x2="100" y2="10" stroke="blue" stroke-w dth="4"/>
</ svg>

resulting in this image:

Line end shapes

The shape of the end of a line is set with the stroke-linecap attribute. Possible values are:

Value Shape

stroke-linecap="butt" ——
stroke-linecap="round" o—
stroke-linecap="square" —

The end of the line is the same shape as the default
stroke-linecap="butt" but projects further beyond the end
coordinate.

Dashed lines
Dashed lines are supported using the stroke-dasharray attribute. A dashed line can be

drawn like this:

<svg xm ns="http://ww. w3. or g/ 2000/ svg" w dt h="400" hei ght ="400" >
<line x1="10" y1="10" x2="100" y2="10" stroke="blue" stroke-w dth="4"

stroke-dasharray="3 2"/>

</ svg>

resulting in this image:

Scalable Vector Graphics (SVG) images 111

Ibex PDF Creator Developers Guide

16.4.16 <polyline>

The <polyline> element is supported. A simple polyline can be drawn like this:

<svg xm ns="http://wwmw. w3. or g/ 2000/ svg" w dt h="12cnf hei ght ="4cnf
vi ewBox="0 0 1200 400">
<polyline fill="none" stroke="blue" stroke-w dth="10"
poi nt s="50, 375
150, 375 150, 325 250, 325 250, 375
350, 375 350, 250 450, 250 450, 375
550, 375 550, 175 650, 175 650, 375
750, 375 750, 100 850, 100 850, 375
950, 375 950, 25 1050, 25 1050, 375
1150, 375" />

</ svg>

resulting in this image:

1

16.4.17 <polygon>

The <polygon> element is supported. A simple polygon can be drawn like this:

<svg xm ns="http://ww. w3. or g/ 2000/ svg" w dt h="12cni hei ght ="4cnf¥
vi ewBox="0 0 1200 400">
<polygon fill="red" stroke="blue" stroke-w dth="10"
poi nt s="350, 75 379, 161 469, 161 397, 215
423,301 350,250 277,301 303, 215
231,161 321, 161" />
<polygon fill="line" stroke="blue" stroke-w dth="10"
poi nts="850, 75 958, 137.5 958, 262. 5
850, 325 742,262.6 742,137.5" />
</ svg>

resulting in this image:

112 Scalable Vector Graphics (SVG) images

Ibex PDF Creator Developers Guide

16.4.18 <text>

The <text> element is supported.

16.4.19 <tspan>

The <tspan> element is not implemented.

16.4.20 <textpath>

The <textpath> element is not implemented.

16.4.21 <pattern>

The <pattern> element is not implemented.

16.5 Opacity

The attributes stroke-opacity and fill-opacity are supported. Using the group opacity
attribute to apply opacity to a group of elements is not supported, instead the opacity
value is applied as if stroke-opacity and fill-opacity has been specified.

This example shows a transparent blue rectangle drawn over an opaque red rectangle.

<svg xm ns="http://ww. w3. or g/ 2000/ svg" w dt h="400" hei ght ="140" >

<rect w dth="400" hei ght="140" fill="none" stroke="silver"/>
<g transfornm="transl at e(10, 10) ">
<rect w dt h="100" hei ght="100" fill="red"/>
</ g>
<g transform="transl at e(30, 30) ">
<rect w dth="100" hei ght="100" fill="blue" stroke-wi dth="1" fill-opacity="0.3" />
</ g>
</ svg>

resulting in this image:

16.6 Markers

Markers are supported at the start and end of <line> and <path> elements. The
<marker> element contains a separate drawing which can be reused. This example
shows an arrowhead which is drawn at the each end of a line:

Scalable Vector Graphics (SVG) images 113

Ibex PDF Creator Developers Guide

<?xm version="1.0" standal one="no"?>
<svg wi dt h="4i n" hei ght="2i n"
vi enBox="0 0 4000 2000" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<def s>
<mar ker id="RedTriangle" viewBox="0 0 10 10" refX="0" refY="5"
mar ker Uni t s="st r okeW dt h"
mar ker W dt h="4" mar ker Hei ght =" 3"

orient="auto" fill="red">
<path d="M0 0O L 10 5L 0 10 z" />
</ mar ker >
</ def s>
<rect x="10" y="10" w dt h="3980" hei ght="1980"
fill="none" stroke="blue" stroke-w dth="10" />

<g transform="transl at e(400,1700) scale(.8)">
<line x1="0" x2="1000" yl1l="0" y2="0" stroke="red" stroke-w dt h="100"

mar ker - end="ur | (#RedTri angl e) "
mar ker-start="url (#RedTri angl e)"/>
</ g>

<g transform="transl at e(400, 700) scale(.8)">
<line x1="0" x2="1000" y1="300" y2="0" stroke="red" stroke-w dt h="30"

mar ker - end="ur | (#RedTri angl e) "
mar ker-start="url (#RedTri angl e)"/>
</ g>

</ svg>

In this example the arrowhead appears once in the SVG, and is rendered four times. Each
time it is rendered its rotaton and size are changed to match the rotation and size of the

line.

—

~<"IIIIIIIIIIIIII'P’

16.7 Linear gradients

Linear gradients are supported. This example produces a gradient from red to yellow
horizontally:

<?xm version="1.0" standal one="no"?>
<svg wi dt h="8cnl'" hei ght ="4cni' vi ewBox="0 0 800 400" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<g>
<def s>
<linearGadient id="MGadient"
x1="100" x2="500" gradi ent Units="user SpaceOnUse" >
<stop offset="5% stop-col or="#F60" />
<stop of fset="95% stop-col or="#FF6" />
</linear G adi ent >
</ def s>

<rect fill="none" stroke="bl ue"

114 Scalable Vector Graphics (SVG) images

Ibex PDF Creator Developers Guide

x="1" y="1" width="798" hei ght="398"/>

<rect fill="url(#WG adient)" stroke="black" stroke-w dt h="5"
x="100" y="100" wi dt h="600" hei ght="200"/>
</ g>
</ svg>

producing this image:

The interpretation of the values specified for the coordinates xi/x2/y1/y2 of the
linearGradient element changes depending on value specified for gradientUnits.

When gradientUnits="userSpaceOnUse" the specified values are in "user space", which
is the space defined by the prevailing <g> element. The specified coordinates are relative
to the prevailing <g> element, so two elements which use the same gradient as their fill
color will appear differently if they are placed in different locations on the page.

This SVG image shows rectangles using the same gradient in conjunction with
gradientUnits="userSpaceOnUse"

<?xm version="1.0" standal one="no"?>
<svg wi dt h="8cm' hei ght="3cm' vi ewBox="0 0 1000 450" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<g>
<def s>
<l i near Gradi ent id="1inear_user SpaceOnUse" gradi ent Uni t s="user SpaceOnUse"
x1="100" y1="100" x2="700" y2="300">
<stop of fset="5% stop-col or="#ff0000" />
<stop of fset="95% stop-col or="#0000ff" />
</linear G adi ent >

</ def s>
<rect fill="none" stroke="blue" x="1" y="1" w dt h="990" hei ght="440"/>
<g transform="transl at e(10, 50) ">
<rect fill="url (#linear_userSpaceOnUse)" x="10" y="10" wi dth="600"
hei ght =" 100"/ >
<rect fill="url (#linear_userSpaceOnUse)" x="200" y="120" w dt h="600"
hei ght =" 100"/ >
</ g>
</ g>
</ svg>

Scalable Vector Graphics (SVG) images 115

Ibex PDF Creator Developers Guide

producing this image:

When gradientUnits="objectBoundingBox" the specified values are relative to the
bounding box of the element being filled, and should be expressed as fractions of the
dimensions of the element being filled. The values for coordinates should be in the range
[0..1], so for example specifying x1="0" starts the gradient at the left hand edge of the
element being filled, and specifying x1="0.2" starts the gradient at 20% of the width of
that element. As the gradient is positioned relative to the element being filled, two
element using the same gradient will appear the same regardless of the position of the
element.

This SVG image shows rectangles using the same gradient in conjunction with
gradientUnits="objectBoundingBox"

<?xm version="1.0" standal one="no"?>
<svg wi dt h="8cni'" hei ght="3cni' vi ewBox="0 0 1000 450" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<g>
<def s>
<l i near Gradi ent id="1inear_objectBoundi ngBox" x1="0" y1="0" x2="1" y2="1">
<stop of fset="5% stop-col or="#ff0000" />
<stop of fset="95% stop-col or="#0000ff" />
</linear G adient>
</ def s>
<rect fill="none" stroke="blue" x="1" y="1" w dt h="990" hei ght ="440"/>
<g transfornm="transl at e(10, 50) ">
<rect fill="url (#linear_userSpaceOnUse)" x="10" y="10" wi dth="600"
hei ght =" 100"/ >
<rect fill="url (#linear_userSpaceOnUse)" x="200" y="120" w dt h="600"
hei ght =" 100"/ >
</ g>
</ g>
</ svg>

producing this image:

116 Scalable Vector Graphics (SVG) images

16.8

Ibex PDF Creator Developers Guide

Radial gradients

Radial gradients are supported from version 5.7.6 onwards.

The interpretation of the values specified for the coordinates cx/cy/r/fx/fy of the
radialGradient element changes depending on value specified for gradientUnits.

When gradientUnits="userSpaceOnUse" the specified values are in "user space", which
is the space defined by the prevailing <g> element. The specified coordinates are relative
to the prevailing <g> element, so two elements which use the same gradient as their fill
color will appear differently if they are placed in different locations on the page.

This SVG image shows rectangles using the same gradient in conjunction with
gradientUnits="userSpaceOnUse"

<?xm version="1.0" standal one="no"?>
<svg w dt h="8cn" hei ght="3cni' vi ewBox="0 0 1000 550" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<g>
<def s>
<radi al Gadi ent id="radi al _user SpaceOnUse" gradi ent Uni t s="user SpaceOnUse"
cx="400" cy="200" r="300" fx="400" fy="200">
<stop offset="0% stop-color="green" />
<stop of fset="50% stop-color="blue" />
<stop of fset="100% stop-color="red" />
</radi al Gradi ent >

</ def s>

<rect fill="none" stroke="blue" x="1" y="1" w dth="990" hei ght="530"/>

<rect fill="url (#radial _userSpaceOnUse)" stroke="black" stroke-w dth="5" x="100"
y="100" w dt h="600" hei ght="200"/>

<rect fill="url (#radial _userSpaceOnUse)" stroke="bl ack" stroke-w dth="5" x="100"
y="310" wi dt h="600" hei ght ="200"/>

</ g>

</ svg>

producing the image below, in which you can clearly see the gradient circles are
centered within the first rectangle.

When gradientUnits="objectBoundingBox" the specified values are relative to the
bounding box of the element being filled, and should be expressed as fractions of the
dimensions of the element being filled. The values for coordinates should be in the range
[0..1], so for example specifying x1="0" starts the gradient at the left hand edge of the
element being filled, and specifying x1="0.2" starts the gradient at 20% of the width of
that element. As the gradient is positioned relative to the element being filled, two
element using the same gradient will appear the same regardless of the position of the
element.

Scalable Vector Graphics (SVG) images 117

Ibex PDF Creator Developers Guide

This SVG image shows rectangles using the same gradient in conjunction with
gradientUnits="userSpaceOnUse"

producing the image below.

118 Scalable Vector Graphics (SVG) images

17.1

Figure 17-1:
Badly positioned
block containers

Chapter 17

Absolute Positioning

Content can be positioned anywhere on the page by placing the content in a
block-container element and setting the absolute-position attribute.

If the absolute-position attribute is set to "fixed", the content will then be positioned on
the page relative to the page area which contains the block-container element.

If the absolute-position attribute is set to "absolute", the content will be positioned on
the page relative to the reference area which contains the block-container element. The
reference area is not the containing block, it is the containing region, table-cell,
block-container, inline-container or table-caption. In XSL-FO 1.0, the specification was
ambiguous and the block-container was positioned relative to the containing area, but in
XSL 1.1 this has been clarified to mean the containing reference area.

Positioning block-containers

It is important to realise that block-containers are not positioned relative to the
containing block. Figure 17-1 shows FO with two absolutely positioned block containers.
Both block-containers will be positioned relative to the containing region, because the
region is the containing reference area. As they both have the same top attribute they
will both be positioned in the same place.

<flow fl ow name="body" >
<bl ock>
sone text
<bl ock- cont ai ner absol ut e-positi on="absol ute" hei ght="2cni' top="3cni>
<bl ock>
i n bl ock-contai ner one
</ bl ock>
</ bl ock- cont ai ner >
</ bl ock>

<bl ock>
sone nore text
<bl ock- cont ai ner absol ut e- positi on="absol ute" hei ght="2cni' top="3cni>
<bl ock>
in bl ock-container tw
</ bl ock>
</ bl ock- cont ai ner >
</ bl ock>
</ fl ow>

The simplest way to position a block-container is to place it inside another
block-container which does not have the absolute-position attribute. FO for doing this is
shown in Figure 17-2. The outer block-container is not absolutely positioned and will be

Absolute Positioning 119

Figure 17-2:
Positioned a
block-container using
another
block-container

17.2

Ibex PDF Creator Developers Guide

placed in the normal flow of content. The inner block-container is absolutely positioned
relative to the outer one.

<flow fl ow name="body" >
<bl ock>
sone text
<bl ock- cont ai ner >
<bl ock- cont ai ner absol ut e-position="absol ute" hei ght="2cn' top="3cn'>
<bl ock>
i n bl ock-cont ai ner one
</ bl ock>
</ bl ock- cont ai ner >
</ bl ock- cont ai ner >
</ bl ock>

<bl ock>
sonme nore text
<bl ock- cont ai ner >
<bl ock- cont ai ner absol ut e- positi on="absol ute" hei ght="2cni' top="3cni'>
<bl ock>
in bl ock-container tw
</ bl ock>
</ bl ock- cont ai ner >
</ bl ock- cont ai ner >
</ bl ock>
</fl ow>

Positioning and sizing block containers

A block-container with absolute-position = "absolute" is positioned relative to its
containing reference area.

The distance between the left edge of the block-container and the left edge of the
containing reference area is set by the left attribute. This attribute specifies the offset of
the block-container's left edge from the containing reference area's left edge. The
default value is "opt", which causes the two edges to be in the same place. Positive
values of left move the left edge of the block-container to the right, making the
block-container smaller.

The distance between the right edge of the block-container and the right edge of the
containing reference area is set by the right attribute. This attribute specifies the offset
of the block-container's right edge from the containing reference area's right edge. The
default value is "opt", which causes the two edges to be in the same place. Positive
values of right move the right edge of the block-container to the left, making the
block-container smaller.

The distance between the top edge of the block-container and the top edge of the
containing reference area is set by the top attribute. This attribute specifies the offset of
the block-container's top edge from the containing reference area's top edge. The
default value is "opt", which causes the two edges to be in the same place. Positive
values of top move the top edge of the block-container downwards, making the
block-container smaller.

The distance between the bottom edge of the block-container and the bottom edge of
the containing reference area is set by the bottom attribute. This attribute specifies the
offset of the block-container's bottom edge from the containing reference area's
bottom edge. The default value is "opt", which causes the two edges to be in the same

120 Absolute Positioning

Figure 17-3:
block-containers
positioned and sized

Figure 17-4:

Ibex PDF Creator Developers Guide

place. Positive values of bottom move the bottom edge of the block-container upwards,
making the block-container smaller.

If none of the left, right, top or bottom attributes is specified the block-container will be
the same size as the reference area which contains it. This is because the offsets all default
to "opt" so the edges of the block-container are the same as the edges of its containing
reference area. This means a block-container with absolute-position="absolute" which is
placed in a region will by default fill that region.

The height of a block-container can be specified with the height attribute, and the width
with the width attribute.

Figure 17-3 shows the FO for a block container with height and width of 10cm, and an
inner block-container which is offset from the outer one, including a negative offset on
the left side. The output from this FO appears in Figure 17-4.

<fl ow fl ow nane="body" >
<bl ock>
<bl ock- cont ai ner hei ght="10cm' w dt h="10cm' margi n-1 eft="3cnt
backgr ound- col or =" #dddddd" >
<bl ock>out er bl ock contai ner </ bl ock>
<bl ock- cont ai ner absol ut e-position="absol ute"

top="1cnt
ri ght="2cnt
| eft="-2cnt

bot t on¥" 4cnt
backgr ound- col or ="#77ccdd"

>
<bl ock>

i nner bl ock-cont ai ner

</ bl ock>

</ bl ock- cont ai ner >

</ bl ock- cont ai ner >
</ bl ock>
</ fl ow>

out er bl ock contai ner

block-containers

positioned and sized

i nner bl ock-cont ai ner

Absolute Positioning 121

Ibex PDF Creator Developers Guide

The example in Figure 17-4 shows how using a negative left value will position the
content to the left of the containing reference area. This is the technique used in this
manual to place the labels next to each example.

122 Absolute Positioning

Figure 18-1:
The page master for a
multi-column page

Chapter 18

Columns

XSL-FO allows us to define a page which has multiple columns, just like this one.

This can only be done for whole pages, not for partial pages. However if we are in a
region which has multiple columns we can treat it as a single-column region and place
output across the whole width of the multi-column page by setting span="all" on
block-level elements which appear immediately below the flow element.

Columns are defined by setting the column-count attribute of a body region element to
a value greater than 1, and optionally setting the column-gap attribute to define a gap

between the columns.

The page master for this is similar to the one shown in Figure 18-1.

<si npl e- page- nast er
mast er - name="chapt er - 2col - odd" >
<region-start extent='2. 5cm/>
<regi on-end extent='2.5cm />
<r egi on- body col um-count ='2
r egi on- nane=" body"
mar gi n=" 2. 5cm / >
<regi on-after
regi on- nane="f oot er - odd" extent="2.5cn{/>
<regi on-before
regi on- name="header - odd" extent="2.5cn{/>
</ si npl e- page- mast er >

All the blocks above, including this one, have span="all" set so that they span the whole

page.

This block does not have span="all", so it
will be fitted into the first column in the
page. Text will flow to the bottom of this
page and then start at the top of the next
column.

If there are blocks above this one on the
page which have span="all" (as there are)
then they will remain in place and the text
which is in only one column will be placed
in the next column, below the span="all"
blocks.

We deliberately repeat the paragraph to
demonstrate this wrapping. This block
does not have span="all", so it will be
fitted into the first column in the page.

Text will flow to the bottom of this page
and then start at the top of the next
column. If there are blocks above this one
on the page (as there are) which have
span="all" then they will remain in place
and the text which is in only one column
will be placed in the next column, below
the span="all" blocks.

It is also possible to have a page start with
content in two columns (like this).

When a block-level object is encountered
which has span="all" the content already
on the page is pushed up to the top, and
the block with span="all" is spread over
the two columns.

Columns 123

124 Columns

Figure 19-1:
A bookmark tree

Chapter 19

Bookmarks

Bookmarks are the entries which appear on the right in a PDF file in Adobe Acrobat.
They are used to navigate directly to locations within the document. They also have a
hierarchical structure, where one bookmark can contain a set of child bookmarks which
in turn can themselves contain other bookmarks.

The bookmark-tree element is optional. If used it should be placed under the root
element, after the layout-master-set and declarations elements and before any
page-sequence or page-sequence-wrapper elements.

The structure of a bookmark tree is shown in Figure 19-1.

<bookmar k-tree>
<bookmar k internal -destination="section-1">
<bookmark-titl e>Chapter 1</bookmark-title>
<bookmark internal -destinati on="section-1-1">
<bookmark-title>Section 1</bookmark-title>
</ bookmar k>
<bookmark internal -destinati on="section-1-2">
<bookmark-title>Section 2</bookmark-title>
</ bookmar k>
</ bookmar k>
<bookmar k internal -destination="section-2">
<bookmark-titl e>Chapter 2</bookmark-title>
<bookmark internal -destinati on="section-2-1">
<bookmark-title>Section 1</bookmark-title>
</ bookmar k>
</ bookmar k>
</ bookmar k-t ree>

We can see the following from the structure shown in Figure 19-1.

The bookmarks are contained in a bookmark-tree element.

* A bookmark element has an internal-destination attribute identifying where in the
document it links to. The value for this attribute should be used as the id attribute on
the destination element.

¢ A bookmark element can contain other bookmark elements.

The text which appears in the bookmark is contained within a bookmark-title element.
Ibex supports using Unicode text in bookmarks.

The example above creates bookmarks like the ones in the Ibex manual.

Bookmarks 125

Ibex PDF Creator Developers Guide

The bookmarks which have child bookmark elements appear in the PDF file in a closed
state, so the user can click the '+' next to them to display the child elements. If you
specify starting-state="show" on a bookmark or bookmark-tree element it's immediate
children will be visible when the PDF file is opened.

126 Bookmarks

Chapter 20

Configuration

All configuration of Ibex is done using the Settings class which is accessed from the
ibex4.FODocument object. This class has many properties which can be changed to
configure the operation of Ibex.

Properties of the Settings class should be changed prior to calling the generate()
method on the FODocument object. The fact that the Settings object is a property of the
FODocument object means that different documents can have different Settings values.
For example Figure 20-1 shows how to set the default line height to 1.4em.

Figure 20-1: usi ng System

Example usage of

usi ng i bex4;

the Settings object

public class |bexTester {
public static void Main(string[] args) {
FODocunent doc = new FODocunent ()
doc. Set ti ngs. Li neHei ght Normal = "1.4enl';
usi ng(Stream xm =
new Fi |l eStrean(args[O0], FileMde.Open, FileAccess.Read)) {
using (Stream output =

new Fil eStrean(args[1], FileMde.Create, FileAccess.Wite)) {
doc. generate(xm, output);
}

Configuration 127

Ibex PDF Creator

Developers Guide

20.1 Fonts

The following properties on the Settings change the way fonts a processed. By default
each absolute font size (small, medium, large etc.) is 1.2 times larger than the previous

size.
Property Type | Default | Notes
XX_Small string 7.o0pt | Must endin 'pt".
X_Small string 8.3pt | Mustendin'pt'.
Small string | 10.0pt | Mustendin'pt"
Medium string 12.0pt | Must end in 'pt'.
Large string | 14.4pt |Mustendin'pt'.
X _Large string | 17.4pt | Mustendin'pt'".
XX _Large string | 20.7pt | Mustendin'pt'.
Property Type Default | Notes
Smaller string | 0.8em |Mustendin'em'.
Larger string 1.2em | Mustendin'em'.

20.2 Line height

The following properties
Settings.LineHeightNormal

on the Settings change the default line height. Ideally
should end in 'em' to make line height proportional to the

font height.
Property Type Default | Notes
LineHeightNormal string 1.2em

20.3 Page size

The following properties on the Settings change the default page size.

Property Type | Default |Notes
PageHeight string | 297mm
PageWidth string | 210mm

128 Configuration

Ibex PDF Creator

Developers Guide

20.4 Include paths

The following properties on the Settings effect retrieving XML or XSL files.

Property

Type

Default

Notes

BaseURI_XML

string

This value sets the base URI for including
images and other XML files. When an
external-graphic element specifies a
relative path, Settings.BaseURI_XML is
the base URI used in accordance with
the rfc2396 URI Specification. When an
XML file uses an entity to include
another XML file, Settings.BaseURI_XML
is the base URI used when Ibex searches
for the included XML file.

BaseURI_XSL

string

This value sets the base URI for including
other XSL files. When an xslinclude
element is used to include another XSL
stylesheet, Settings.BaseURI_XSL can be
used to specify the location the included
stylesheet should be loaded from.

20.5 Images

The following properties on the Settings effect retrieving images specified using the

external-graphic element.

Property

Type

Default

Notes

BaseURI_XML

string

This value sets the base URI for including
images and other XML files. When an
external-graphic element specifies a
relative path, Settings.BaseURI_XML is
the base URI used in accordance with
the rfc2396 URI Specification. When an
XML file uses an entity to include
another XML file, Settings.BaseURI_XML
is the base URI used when Ibex searches
for the included XML file.

WebRequestTimeoutMs

int

300

When an external-graphic element
specifies an image is retrieved from a
web server, this is the timeout used for
the call to the web server. Units are
milliseconds.

Configuration 129

http://gbiv.com/protocols/uri/rfc/rfc2396.html#rfc.section.5.1
http://gbiv.com/protocols/uri/rfc/rfc2396.html#rfc.section.5.1
http://gbiv.com/protocols/uri/rfc/rfc2396.html#rfc.section.5.1
http://gbiv.com/protocols/uri/rfc/rfc2396.html#rfc.section.5.1
http://gbiv.com/protocols/uri/rfc/rfc2396.html#rfc.section.5.1
http://gbiv.com/protocols/uri/rfc/rfc2396.html#rfc.section.5.1

Ibex PDF Creator

Developers Guide

20.6 Border widths

The following properties on the Settings change the values for border widths specified

with constants like 'thin'.

Property Type Default | Notes
BorderWidthThin string 1pt
BorderWidthMedium string 2pt
BorderWidthThick string 3pt

20.7 Layout
The following properties on the Settings change the appearance of content in the PDF
file.
Property Type Default | Notes
OverflowlsVisible bool true | By default a region has overflow="auto’,

leaving it up the Ibex to decide whether
content which overflows the bottom
edge of a region is displayed or
discarded.

If Settings.Overflowlsvisible is true, the
content will be displayed, if false it will
be discarded. This property applies only
if the XSL-FO attribute 'overflow' is not
set oris set to 'auto'.

20.8 Leaders

The following properties on the Settings change the values for leader formatting

objects.

Property Type | Default | Notes

LeaderDot char When leader-pattern='dots', this is the
character used as the dot

130 Configuration

Chapter 21

Extensions

This chapter details Ibex-specific extensions to XSL-FO. Typically these extensions
implement functionality such as password protecting a document which is not part of
the XSL-FO standard.

The Ibex extensions have a namespace which is specified using the xmins attribute as
shown in Figure 21-1.

21.1 Document security

Ibex supports encryption of PDF documents and the setting of various document
permissions. This is done using the ibex:security element as shown in Figure 21-1.

Figure 21-1: <r oot xni ns="htt p://ww. w3. or g/ 1999/ XSL/ For nat "
FO using the xm ns:i bex="http://ww. xm pdf.com 2003/ i bex/ For mat " >

ibex:security element <j bex: security deny-print="true' deny-extract="true'
deny-nodi fy='true' user-password='user' owner-password='owner'/>

Two levels of encryption are available, 40 bit and 128 bit. When using 40 bit encryption
available permissions which can be set including deny-print, deny-extract and
deny-modify. When using 128 bit encyption additional permissions can be set including
deny-assembly and deny-print-high-resolution. These options are details in the sections
below.

The level of encryption is specified using the bits attribute of the ibex:security element.
This defaults to "40", so specify 128 bit encryption specify bits="128".

If used the ibex:security element must occur before any page-sequence elements.

Extensions 131

Ibex PDF Creator

Developers Guide

21.1.1 40 bit encryption security options

When the number of bits of encryption is set to 40 or not specified, the attributes of the

ibex:security element are:

Attribute

Values

Meaning

user-password

Specifies a password required to open the
document in Acrobat. Once the document
is opened with the correct user password,
access is limited to permissions given
using the attributes below.

owner-password

Specifies a password required to get all
rights to the document in Acrobat. Once
the document is opened with the correct
owner password the user has total control
of the document.

deny-print

true
false

If this is set to true a user who opens the
document with the user password will not
be able to print the document.

deny-extract

true
false

If this is set to true a user who opens the
document with the user password will not
be able to use cut-and-paste functionality
to copy part of the document.

deny-modify

true
false

If this is set to true a user who opens the
document with the user password will not
be able to modify the document.

Setting any of the attributes listed above will cause Ibex to encrypt the document.

Specifying the user-password but not the owner-password will set the owner-password
to the same value as the user-password. This means anyone who can open the
document using the user password has complete control of the document.

Specifying the owner-password but not the user-password is common usage. This means
the user can open the document with limited rights without needing a password, but
cannot then change or exceed those rights without knowing the owner password.

132

Extensions

Ibex PDF Creator

Developers Guide

21.1.2 128 bit encryption security options

When the number of bits of encryption is set to 128, the attributes of the ibex:security

element are:

Attribute Values

Meaning

user-password

Specifies a password required to open the
document in Acrobat. Once the document
is opened with the correct user password,
access is limited to permissions given
using the attributes below.

owner-password

Specifies a password required to get all
rights to the document in Acrobat. Once
the document is opened with the correct
owner password the user has total control
of the document.

deny-print true If this is set to true a user who opens the
false document with the user password will not
be able to print the document.
deny-print-high- true If this is set to true a user who opens the
resolution false document with the user password will not
be able to print a high resolution copy of
the document. They will only be able to
print a low resolution (150dpi) version. If
deny-print="true" this attribute has no
effect and the document cannot be
printed.
deny-extract true If this is set to true a user who opens the
false document with the user password will not
be able to use cut-and-paste functionality
to copy part of the document.
deny-modify true If this is set to true a user who opens the
false document with the user password will not
be able to modify the document but can
still "assemble" it. See deny-assembly
below.
deny-assembly true If deny-modify="true" and
false deny-assembly="false" then the user

cannot change the document, but can
"assemble" it, which means insert, rotate
or delete pages and create bookmarks or
thumbnail images. Setting
deny-modify="true" and
deny-assembly="true" prevents assembly.

Setting any of the attributes listed above will cause Ibex to encrypt the document.

Extensions 133

Ibex PDF Creator Developers Guide

Specifying the user-password but not the owner-password will set the owner-password
to the same value as the user-password. This means anyone who can open the
document using the user password has complete control of the document.

Specifying the owner-password but not the user-password is common usage. This means
the user can open the document with limited rights without needing a password, but
cannot then change or exceed those rights without knowing the owner password.

21.2 Standard document properties

Ibex allows you to set the various properties associated with a PDF document. These
properties can be viewed in Acrobat by using the File | Document Properties | Summary
menu option or just pressing control-d.

Figure 21-2 shows FO for setting the document properties using the ibex:properties
element.

Figure 21-2: <root xm ns="htt p://ww. w3. or g/ 1999/ XSL/ For mat "
FO using xm ns: i bex="http://ww. xm pdf.com 2003/ i bex/ For mat " >

ibex:properties <j pex: properti es
title="1bex User Manual" subject="1bex"

aut hor="vi sual programming |imted"
keywor ds="xnl , pdf" creator="xtransfornt />

If used the ibex:security element must occur before any page-sequence elements.

The attributes of the ibex:properties element are:

Attribute Values Meaning

title Specifies a string which becomes the title
property of the document.

subject Specifies a string which becomes the
subject property of the document.

author Specifies a string which becomes the
author property of the document.

keywords Specifies a string which becomes the
keywords property of the document.
Separate individual keywords with
commas.

creator Specifies a string which becomes the
creator property of the document. This
should be the name of the application
which created the XSL-FO document from
which the PDF file was created.

134 Extensions

Ibex PDF Creator

Developers Guide

Attribute

Values

Meaning

page-mode

Specifies how Acrobat will display the
document when it is first opened. If set to
'bookmarks' then if the document has
bookmarks they will be displayed. If set to
'thumbs' then the thumbnails tab in
Acrobat will be displayed. If set to
'fullscreen’ the document will be displayed
without any toolbar, border etc.

Following the PDF standard, the document creator property should be the name of the
product which converted the content to PDF format, so this is always Ibex. Other
document properties such as creation and modification date are populated

automatically by Ibex.

21.3 Custom Document Properties

Acrobat supports the display and editing of custom document properties. These
properties are a set of name value pairs stored within the PDF file. In Acrobat 6.0 these
properties can be viewed by using the File | Document Properties menu option and
clicking on the "Custom" entry in the list box to display a screen like this:

Document Properties

X]

Custom Properties

Name: | favourite color

Value: | blue|

Name

|favourite color

You can add custom properties to this document. Each custom property requires a
unique name, which must be different from the standard property names found on
other Document Properties panels.

These custom properties are inserted into the PDF using the ibex:custom element as

shown in Figure 21-3.

Figure 21-3: <root xm ns="http://www. W3. or g/ 1999/ XSL/ For mat "
FO using the xm ns: i bex="http://ww:. xrm pdf. conf 2003/ i bex/ For nat " >

ibex:custom element <j pex: properties title="1bex User Manual ">
<i bex: custom nanme="favourite color"
</ibex: properties>

val ue="bl ue"/ >

Each property must have a name and value attribute.

Extensions 135

21.4

214.1

21.4.2

21.4.3

21.5

21.6

Figure 21-4:
FO setting the
document base URL

Ibex PDF Creator Developers Guide

Image processing

Image resolution

Ibex adds the dpi attribute to the external-graphic element to permit managing the dots
per inch resolution of images. See Image resolution on page 98.

Anti-aliasing

Ibex adds the ibex:anti-alias attribute to the external-graphic element to permit
disabling anti-aliasing in order to achieve clearer images. See Image anti-aliasing on page

98.

Multi-page TIFF image processing

Ibex adds the ibex:page attribute to the external-graphic element to specify which page
of a muti-page TIFF image should be included in the PDF file. See Multi-page TIFF images
on page 103.

Bookmarks

XSL-FO 1.0 had no support for creating bookmarks in the PDF file. XSL 1.1 now has this
feature so the ibex:bookmark element is no longer supported.

The XSL 1.1 implementation of bookmarks is described on page 125.

Document base URL

The PDF format supports setting a base URL for links created with a basic-link element.
This base URL is prepended to the destination specified with an external-destination
attribute if (and only if) the specified destination does not start with a'/' character.

Figure 21-4 shows FO which creates a document with "http://www.xmlpdf.com" as the
base URL and a link to the page "index.html". When the user clicks on the link in the PDF
file, it will go to "http://www.xmlpdf.com/index.html".

<i bex: docunent - base-url val ue="http://ww. xm pdf.cont'/>
<bl ock>
<basi c-1ink external -destination="url (index.htm)"'>
i ndex. ht m
</ basi c- i nk>
</ bl ock>

The base URL is a document-wide property and can be set only once.

136 Extensions

Ibex PDF Creator

Developers Guide

This property should not be confused with the Settings.BaseURI value which specifies a
base URI to be used when Ibex retrieves images, stylesheets and XML during creation of

the PDF file.

21.7 Ibex version

The ibex:version element inserts the version number of Ibex used to create the PDF file.
This is an inline element which inserts characters into the document. Figure 21-5 shows
FO which uses this element and the output appears in Figure 21-6.

Figure 21-5: <bl ock xni ns:ibex="http://ww. xm pdf.con 2003/ i bex/ For mat " >

FO using ibex:version </ bl ocks

Figure 21-6:
Output from
ibex:version

21.8 PDF/X

created with I bex version <ibex:version/>

created with | bex version 6.11.1.3

Ibex can create PDF files which comply with the PDF/X standard. This is described in

detail on page 151.

21.9 Viewer Preferences

Ibex can set flags on the PDF file which control how the viewer application, such as

Acrobat Reader, will display the PDF file.

These flags are set using the ibex:viewer-preferences element as shown in Figure 21-7.

Figure 21-7: <root xn ns="http://wwmv. w3. or g/ 1999/ XSL/ For mat "

FO using the

xm ns: i bex="http://ww:. xm pdf. conf 2003/ i bex/ For nat " >

ibex:viewer- <j pex: vi ewer - pref er ences hi de-t ool bar="true"/>

preferences element - - -

The attributes for the ibex:viewer-preferences element are:

Attribute Values Meaning

hide-toolbar true Set to true to hide the viewer application's
false tool bars

hide-menubar true Set to true to hide the viewer application's
false menu bar

hide-window-ui true Set to true to hide the Ul and just display
false the document content

fit-window true Set to true to resize the viewer window to
false fit the document page size

Extensions

137

Ibex PDF Creator

Developers Guide

Attribute Values Meaning

center-window true Set to true to center the viewer window
false on the screen

display-doc-title true Set to true to have the viewer display the
false document title in the viewer frame rather

than the file name. The document title is
set using the title attribute of the
ibex:properties element as detailed on

page 134.

138 Extensions

22.1

Chapter 22

Accessiblity and PDF/UA

Ibex now supports the PDF Universal Accessibility Standard and WCAG

For information on the standard see PDF/UA

Enabling PDF/UA Creation

To create a PDF/UA compliant PDF the FO file needs to have three things:

(1) a declaration of the ibex namespace on the <fo:root> element like this:

<f o: root
xm ns: fo="http://ww.w3. or g/ 1999/ XSL/ For mat "
xm ns: i bex="http://ww. xm pdf.con 2003/ i bex/ For mat "

>

(2) alanguage declaration, which can be done on the <fo:root> element like this:

<f o: root
xm : | ang="en- US"

>

(3) the FO file needs to include metadata surrounded by <ibex:pdfua> tags like this:

<i bex: pdf ua>
<x: xnpmet a xm ns: x="adobe: ns: met a/ "
x: xnmpt k=" Adobe XMP Core 5.6-c01591. 163280, 2018/ 06/22-11: 31: 03" >
<rdf: RDOF xm ns: rdf ="http://ww.w3. org/ 1999/ 02/ 22-r df - synt ax- ns#" >
<rdf: Description rdf:about="" xm ns:dc="http://purl.org/dc/elenents/1.1/"
xm ns: pdf uai d="http://ww. ai i m or g/ pdf ua/ ns/id/">
<dc:title>
<rdf: Al t>
<rdf:li xm:lang="en">PDF/ UA Docunent</rdf:li>
</rdf: Al t>
</dc:title>
<pdf uai d: part >1</ pdf uai d: part >
</rdf: Description>
</ rdf : RDF>
</ x: xnpnet a>
</i bex: pdf ua>

This metadata includes the title "PDF/UA Document", change that to your own
document title.

Once the three items above are included in the FO file Ibex will produce a PDF/UA
compliant file.

A complete test file with one paragraph looks like this:

Accessiblity and PDF/UA 139

https://accessible-docs.com/overview-pdf-ua-standard/

Ibex PDF Creator Developers Guide

<?xm version="1.0" encodi ng="utf-8"?>
<f o: r oot
xm ns: fo="http://ww.w3. or g/ 1999/ XSL/ For mat "
xm ns: i bex="http://ww. xm pdf.com 2003/ i bex/ For mat "
xm : |1 ang="en- US"
>

<i bex: pdf ua>
<x: xnmpneta xm ns: x="adobe: ns: neta/" x: xnpt k="Adobe XMP Core 5.6-c01591. 163280
2018/ 06/ 22-11: 31: 03" >
<rdf: RDF xm ns: rdf ="http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#" >
<rdf: Description rdf:about="" xm ns:dc="http://purl.org/dc/elenents/1.1/"
xm ns: pdf uai d="http://ww. ai i m or g/ pdf ua/ ns/id/">
<dc:title>
<rdf: Al t>
<rdf:li xm:|ang="x-defaul t">PDF/ UA Docunment </rdf:li>
<rdf:li xm:lang="en">PDF/ UA Docunent</rdf:li>
</rdf: Al t>
</dc:title>
<pdf uai d: part >1</ pdf uai d: part >
</rdf: Description>
</ rdf : RDF>
</ x: xnpnet a>
</i bex: pdf ua>

<f o: | ayout - mast er - set >
<f 0: si npl e- page- nast er nast er - nane="page" nargi n="1. 5cm' page- hei ght =" 297m{'
page-wi dt h="310nmm" >
<f 0: regi on-body col um-count="1" regi on- nane="body" margi n="2. 75cm 0. 5cm 1cm
3cnm />
</ f o: si npl e- page- nast er >
</fo:l ayout - mast er - set >

<f o: bookmar k-t ree>
<f o: bookmark internal -destinati on="header1" starting-state="show'>
<f o: bookmark-titl e>Headi ng One</fo: bookmark-title>
</ f o: bookmar k>
</ fo: bookmark-tree>

<f 0: page- sequence naster-reference="page" initial-page-nunber="1" format="i"
font="12pt arial">
<fo:flow font="11pt arial" fl ow name="body">
<fo:block font-size="larger" rol e="Hl" id="header1">
Mai n headi ng
</ f o: bl ock>
<f o: bl ock>
Hell o worl d
</ f o: bl ock>
</fo:fl ow
</ f o: page- sequence>
</fo:root>

140 Accessiblity and PDF/UA

22.2

Ibex PDF Creator Developers Guide

The file created from the FO can be validated using the free PAC program. This tests
various aspects of compliance and shows the results:

A PAC 2024 -PDF Accessbity Checker - BETA 1 - x

PAC ® 0

& Oven doament

Tite PDF/UA Document
Fiename small_example_ua.pdf
Language en-Us

Pages 1

Tags 4

sz 28K

veorn | vwos | ity 9

The PDF/UA requirements checked by PAC are fulfiled.

¥ POFSyntax (IS0 32000-1) ©

CLOLLOR

@ retonient [B roreeon flas

The tagged pdf tree structure can be viewed:

Logical Structure — smal_example._ua.pdf o x

Note that the contents of the fo:page-sequence have been placed in a "Part" structure
element. This is optional, controlled by the Settings.
PDFUA_PutPageSequenceAreasinPartElements flag.

Headers

As shown in the above example any fo:block can have the "role" property set. To create
a header use H1, H2 .. H6 as standards-compliant heading roles, like this:

<fo: bl ock font-size="larger" rol e="HL" id="header1">
Mai n headi ng
</ fo: bl ock>

To disable the use of the "role" property when creating structured elements specify the
'ignore-role-attributes' property on the <ibex:pdfua> node like this:

<i bex: pdfua ignore-role-attributes="true">

Accessiblity and PDF/UA 141

Ibex PDF Creator Developers Guide

22.3 Tables
Table elements are automatically tagged according to the following table:
Element Tag
fo:table Table
fo:table-caption Caption
fo:table-header THead
fo:table-body TBody
fo:table-footer TFoot
fo:table-row TR
fo:table-cell TD or TH

Table cells inside a table header as tagged as TH. In addition:

e cellsin table headers are given an "ID" property to identify them

¢ cellsin the table body automatically have a "Headers" property which identifies which
header cell(s) are relevant headings. There might be multiple if the cell spans multiple
columns

e where are header has multiple rows, the cells in the lower rows have "Headers"
properties which reference the cells in higher rows which cover the same columns

In practice this looks like the element tree shown below, where are TH element has "ID",
"Role" and "Rowspan" properties:

aaaaaaaa

142 Accessiblity and PDF/UA

Ibex PDF Creator Developers Guide

And a TD cell element in the table body has a "Headers" property which matches the
"id" property of the cell above it in the header:

mmmmmmmm ~ testpdf o x

Stuchre cements | Artfcts Pagevew | properied | Rolenap
S E ™ | cooton
CE® v Genera
vEm™)
>Ee e
>E™ Role o
> E ™ ActaText
>E™ Atemate Text
>E® Expansion text
VE s g
vE® v atrbutes
v Em® v Tabe
>Ee
>E ™
v @ o
>Ee

Scope None”

Eo
Eo
Eo
Eo

> @ m

22.4 Lists

List elements are automatically tagged according to the following table:

Element Tag
fo:list-block L
fo:list-item-label Lbl
fo:list-item-body Lbody

22.5 Static Content

The contents of fo:static-content elements is marked as "Artifact".

22.6 Image Alt Tags

You can specify an Alt tag to describe images with text using the "ibex:alt" property like
this:

<f o: ext er nal - graphi ¢ src="RedbrushAl pha- 0. 25. png" ibex:alt="picture of tree"/>

22.7 WCAG Requirements

PDF/UA documents created by Ibex support the Web Content Accessibility Guidelines 2.2
standard.

Accessiblity and PDF/UA 143

https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/

22.7.1

22.7.2

Ibex PDF Creator Developers Guide

The PAC program supports viewing WCAG compilance using the WCAG tab on the main
screen:

A\ PAC 2024 - PDF Accessbility Checker — X
PAC
(i@ Open document
Tite PPDF/UA Document
...... T

Language en-Us

b 3
T s02
s= 301
s | VEGE | Aquity 8]
“The WCAG 2.1 requirements checked by PAC are fulfiled.

Chedgont passed ed Faled
@ LiTextatematies o o o
eda 0 0 0
262 0 0
Bt 0 0
o 0 0
0 0 0
0 0 0
3 0 0
0 0 0
= 0 0
o 0 0
0 0 0
w15 0 0
(@) rentin e S T b ®

Each of the WCAG 2.2 requirements which relate to PDF files are explained below. The
descriptions of the requirements come from www.w3.org

PDF1: Applying text alternatives to images with the Alt entry in PDF documents

This requirement is satisfied. Ibex supports Alt entries for images using the ibex:alt
property on each <fo:external-graphic> elements like this:

<f o: ext ernal - graphi ¢ src="RedbrushAl pha-0. 25. png" ibex:alt="picture of tree"/>

Support for the same thing on the <fo:instream-foreign-object> element will be added
soon.

PDF2: Creating bookmarks in PDF documents

This requirement is satisfied. Ibex supports creating bookmarks using the
<fo:bookmark-tree> and <fo:bookmark> elements like this:

<f 0: bookmar k-tree>
<f o: bookmar k i nternal -destinati on="CONTENTS67104136" >
<fo: bookmark-title>, 1161415 0¥6f0fbpOkBark-titl e>
</ f o: bookmar k>

This creates a bookmark tree in the PDF file like this:

Table of Contents X
=] e
Conepxcatine Costanne apaiisepos pexima a1pa & cpeste Borland Delphil'ennazuit [opesRSDN
_ Beenesve Magazine #4-2004Kax issectio, Borland, cozzasas Delphi, opuentuposaz 1ot npoayxt 1a
= phitiok npoirssozeTea 110 uis Gisieca. TT03T0MY B COCTAR HTOTO IPOAYKTA HE BIIOMCHO
Koa: oT ucxoanoro ao CPEICTR 1A COTIANNS TAKIX HIIKOYPOBHEBLIX Beltei, Kak Apaiiaephi. Oanako Delphi
MaWwnHHOro ABISCTCA YHHBEPCATBHOI CPEOii IPOrPAMMHPOBAHIS 1 1103BONAET c03AaBaTs T10,
OpHenTHpOBAlHOE HA J0GkIe 31241, B AauHOl CTAThe paccMATPHBAETCA Co3AaNIe APaiiBepa
Kougnuxr gopuaros epezcraan Delphi. 20.02.20051.0Drivers in Delphi,
obbekTHEX daiinos
Beezenne 1
Minwenm apaiisep Koz: 0T HCXO/IHOTO /10 MAIIHHHOTO 1
Kownsius, cBopea u KoH(IUKT (OpMATOB 00BEKTHEIX (haiiion 2
nposepka Apaiisepa IMumem apaiisep 3
Pesiove Ko suus, cOOpKa M NpoBepKa Jpaiisepa N
8

NPHHLUIMATENO PALIHAHBIX HACTH — COAAMHE KOAD NO/IBIORATEILCKOTO PEANMA H KOZA
peinya spa.

Taxoe paaencniie BL3BAHO OCOGRHHOCTAMI BHyTpeHHero cTpoess Windows. Mockoasky
ficTROM NpOLeCCOpOB U1 Beero ceveiicTaa Windows ABISIOTCA MpoLeCCOpst
jictea x86. Hasectuo, w0 o my

Joro cemeiicTaa I

Hethipe

144 Accessiblity and PDF/UA

https://www.w3.org/WAI/WCAG22/Techniques/#pdf

Ibex PDF Creator Developers Guide

22.7.3 PDF3: Ensuring correct tab and reading order in PDF documents

This requirement is satisfied. The order of text in the PDF follows the order used in the
input formatting objects document.

22.7.4 PDF4: Hiding decorative images with the Artifact tag in PDF documents

This requirement is satisfied. The Artifact tag is applied to page headers and footers
(specifically the contents of <fo:static-content> elements) and other elements such as
table cell borders and backgrounds.

Elements marked with the Artifact tag can be viewed on the Artifacts tab of the Logical
Structure view in PAC program:

Logical Structure — atifact_tags._ua.pdf o x

Structre doments | Artacts Pageview | Propertes | Rokmap
v D paget
14
& PatPatPatiPat]

22.7.5 PDFb5: Indicating required form controls in PDF forms

This requirement is not applicable as Ibex does not support creation of PDF forms as
they are not part of the XSL Formatting Objects specification.

22.7.6 PDF6: Using table elements for table markup in PDF Documents

This requirement is satisfied. Table elements are automatically tagged according to the
following table:

Element Tag
fo:table Table
fo:table-caption Caption
fo:table-header THead
fo:table-body TBody
fo:table-footer TFoot
fo:table-row row
fo:table-cell TDorTH

22.7.7 PDF7: Performing OCR on a scanned PDF document to provide actual text

This requirement is satisfied. Ibex generates actual text rather than images of text.

Accessiblity and PDF/UA 145

Ibex PDF Creator Developers Guide

22.7.8 PDF8: Providing definitions for abbreviations via an E entry for a structure element

This requirement is satisfied. The definition of an abbreviation can be specified using the
ibex:abbrev property like this:

<f o: bl ock>

<fo:inline ibex:abbrev="National Aeronautics and Space
Adnmi ni stration">NASA</fo:inline>

goes to noon
</ f o: bl ock>

This can be viewed using the PAC program like so:

Logical Structure — test. pdf o x

El spon Expansion text "National Aeronautics and Space Administration”

22.7.9 PDF9: Providing headings by marking content with heading tags in PDF documents

This requirement is satisfied.

22.7.10 PDF10: Providing labels for interactive form controls in PDF documents

This requirement is not applicable as Ibex does not support creation of PDF forms as
they are not part of the XSL Formatting Objects specification.

22.7.11 PDF11: Providing links and link text using the Link annotation and the /Link structure
element in PDF documents

This requirement is satisfied. A link annotation is created automatically when using a

<fo:basic-link> element

<fo:block text-align="justify" text-align-last="justify" space-after="3pt" >
<fo: basic-link internal -destination="id8">1. |ntroduction

146 Accessiblity and PDF/UA

22.7.12

22.7.13

22.7.14

22.7.15

Ibex PDF Creator Developers Guide

This can be viewed using the PAC program like so:

o x

mmmmmm

PDF12: Providing name, role, value information for form fields in PDF documents

This requirement is not applicable as Ibex does not support creation of PDF forms as
they are not part of the XSL Formatting Objects specification.

PDF13: Providing replacement text using the /Alt entry for links in PDF documents

This requirement is satisfied. Atlernative text can be provided using the ibex:alt property
of the <fo:basic-link< element

<fo:block text-align="justify" text-align-last="justify" space-after="3pt" >
<fo: basic-link internal -destinati on="id8" ibex:alt="basiclink">1.
I nt roducti on

This can be viewed using the PAC program like so:

mmmmmmmm ~ testpdf o x

PDF14: Providing running headers and footers in PDF documents

This requirement is satisfied using the <fo:table-header> and <fo:table-footer> elements.

PDF15: Providing submit buttons with the submit-form action in PDF forms

This requirement is not applicable as Ibex does not support creation of PDF forms as
they are not part of the XSL Formatting Objects specification.

Accessiblity and PDF/UA 147

Ibex PDF Creator Developers Guide

22.7.16 PDF16: Setting the default language using the /Lang entry in the document catalog
of a PDF document

This requirement is satisfied using the xml:lang attribute on the <fo:root> element as
shown here:

<f o: r oot
xm ns: fo="http://ww.w3. or g/ 1999/ XSL/ For mat "
xm ns: i bex="http://ww. xm pdf. conf 2003/ i bex/ For mat "
xm : 1 ang="en- US"
>

22.7.17 PDF17: Specifying consistent page numbering for PDF documents

This requirement is satisfied using:

22.7.18 PDF18: Specifying the document title using the Title entry in the document
information dictionary of a PDF document

This requirement is satisfied.

The XML from which a PDF/UA document is created contains an entry like this:

<i bex: pdf ua>
<x: xnmpneta xm ns: x="adobe: ns: neta/"
x: xnpt k=" Adobe XWMP Core 5.6-c01591. 163280, 2018/ 06/22-11:31: 03">
<rdf: RDF xm ns: rdf ="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#" >
<rdf: Description rdf:about="" xm ns:dc="http://purl.org/dc/el enents/1.1/"
xm ns: pdf uai d="http://ww:. ai i m or g/ pdf ua/ ns/i d/">
<dc:title>
<rdf: Al t>
<rdf:li xm:|ang="x-default">PDF/ UA Docunent</rdf:li>
<rdf:1i xm:lang="en">PDF/ UA Docunent</rdf:li>
</rdf: Al t>
</dc:title>
<pdf uai d: part >1</ pdf vai d: part >
</ rdf: Description>
</ r df : RDF>
</ x: xnmpmet a>
</i bex: pdf ua>

This entry is necessary for Ibex to identify the document as a PDF/UA document.
The <dc:title> element contains one or more document titles.

This XML is copied to the created PDF.

148 Accessiblity and PDF/UA

22.7.19

Ibex PDF Creator Developers Guide

Adobe Acrobat will interpret this XML and display the title from the <dc:title> element
like this:

ity Fonts Custom Advwnced

File: test pdf

e [FoFUADoe

nator. |

sct |

Keywords:

Crested: 271012025 62539 pm
Modified: 27/01/2025 62539 pm

Application:

Advanced
PDF Producer: _ bex PDF Creator 610210 [NET Framework 48/64]P
POF Version: 17 (Acrobst 8)
Location: D:bmlpdfheaditrunkitesty
File Size: 7418 KB (75,962 Bytes)
PageSize: 850x1L00in Number of Pages: 2

Tageed PDF: Yes FastWebView: No

but other PDF viewers do not do this, so in addition to adding the <dc:title> element to
the PDF file Ibex copies it to the catalog document properties.

PDF19: Specifying the language for a passage or phrase with the Lang entry in PDF
documents

This requirement is satisfied. Block and inline elements can have their language specified
using the xml:lang property like this:

<fo: bl ock xm :1ang="en- GB">
this block is "en-GB"
<fo:inline xm :|lang="de-DE">but this sentence is "de-DE"'</fo:inline>
this block is "erun-GB"

</ fo: bl ock>

Where there are multiple languages used in a single paragraph this creates span
elements in the document structure:

Logical Structure — test. pdf o x

Stuctre sements | atfocs Fagevien | Fopertes Roenon
© O ooament Capton vate
v H M
v B D
v B s Tite
> [£] Marked Content (Span) Role “Span™
B son
v B o
> [£] Marked Content (Span)

o

Accessiblity and PDF/UA 149

22.7.20

22.7.21

22.7.22

22.7.23

Ibex PDF Creator Developers Guide

PDF20: Using Adobe Acrobat Pro's Table Editor to repair mistagged tables

This requirement is satisfied. The table elements and tags are shown here using the PAC
program:

Logical Structure — test. pdf o x

Structre elements | Artfacts Page view

>E ™

CE® v Genera
vEm™)
>Ee e
>E™ Role o
> E ™ ActaText
>E™ Atemate Text

>E® Expansion text

VE s g

vE® v atrbutes

vEm T

> Br Ronspan
>E ™
vEm®
> E e
E o
E o
E o
E o
> @ m

Scope None”

PDF21: Using List tags for lists in PDF documents

This requirement is satisfied. List elements are automatically tagged according to the
following table:

Element Tag
fo:list-block L
fo:list-item LI
fo:list-item-label Lbl
fo:list-item-body Lbody

PDF22: Indicating when user input falls outside the required format or values in PDF
forms

This requirement is not applicable as Ibex does not support creation of PDF forms as
they are not part of the XSL Formatting Objects specification.

PDF23: Providing interactive form controls in PDF documents

This requirement is not applicable as Ibex does not support creation of PDF forms as
they are not part of the XSL Formatting Objects specification.

150 Accessiblity and PDF/UA

Chapter 23

PDF/X

This chapter details Ibex-specific extensions to the XSL-FO XML to support creation of
PDF files which conform to the PDF/X standard.

Ibex implements the PDF/X standard using the ibex:pfdx element as shown in Figure 23-1.

Figure 23-1: <root xm ns="http://www. W3. or g/ 1999/ XSL/ For mat "
PDF/X xm ns:i bex="http://ww:. xnm pdf. conf 2003/ i bex/ For nat " >

<i bex: pdf x col or-profile-file-name="W deGnut RGB.icc"/>

The Ibex extensions have a namespace which is specified using the xmlns attribute as

shown above.

The ibex:pdfx element must occur before any output is generated.

Using the ibex:pdfx element will automatically set the document color space to CMYK.

The existence of the ibex:pdfx element causes Ibex to create a PDF/X compatible PDF
file. The field Settings.PDFXMode used in earlier releases has been removed.

The attributes of the ibex:pdfx element are:

Attribute

Values

Meaning

color-profile-file-name

Full or relative path to a ICC color profile
file

registry-name

Registry Name used in the PDF
Outputintents structure. If not specified
this defaults to "http://www.color.org".

info

Optional text which will become the Info
value in the first Outputintents array
entry.

output-condition-
identifier

Optional text which will become the
OutputConditionldentifier value in the first
Outputintents array entry. This defaults to
"Custom"

PDF/X 151

Ibex PDF Creator

Developers Guide

Attribute

Values

Meaning

output-condition

Optional text which will become the
OutputCondition value in the first
Outputintents array entry. This defaults to
"Custom". Acrobat proposes values such
as "TRoo1 SWOP/CGATS".

The color profiles is read from the specified ICC file, compressed, and embedded in the

PDF file.

23.1 Media box

The MediaBox size within the PDF file will be set to the size of the page as specified on
the simple-page-master for that page.

23.2 Bleed box

The BleedBox size defaults to the MediaBox size. The BleedBox can be specified as a
change from the MediaBox by specifying the ibex:bleed-width attribute on the
simple-page-master. This attribute specifies the distance by which the BleedBox is
smaller than the MediaBox as shown in Figure 23-2.

Figure 23-2: <si npl e- page- mast er page- hei ght ="313nm' page-wi dt h="226mf'
i bex: bl eed-w dt h="3mf >

Setting the bleed box mast er - name="page”

size

If one value is used it applies to all sides of the page, if two values are used the top and
bottom edges use the first value and the left and right edges use the second. If there are
three values the top is set to the first value, the sides are set to the second value, and
the bottom is set to the third value. If there are four values, they apply to the top, right,
bottom and left edges in that order.

The following attributes can be specified to set each side explicitly: bleed-top-width,
bleed-bottom-width, bleed-right-width, bleed-left-width.

23.3 Trim box

The TrimBox size defaults to the BleedBox size. The TrimBox can be specified as a
change from the BleedBox by specifying the ibex:trim-width attribute on the
simple-page-master. This attribute specifies the distance by which the TrimBox is smaller

than the BleedBox as shown in Figure 23-3.

Figure 23-3: <si npl e- page- mast er page- hei ght ="313mt page- wi dt h="226mf
i bex:trimw dth="3mi>

Setting the trim box mast er - name="page”

size

152 PDF/X

Ibex PDF Creator Developers Guide

If one value is used it applies to all sides of the page, if two values are used the top and
bottom edges use the first value and the left and right edges use the second. If there are
three values the top is set to the first value, the sides are set to the second value, and
the bottom is set to the third value. If there are four values, they apply to the top, right,
bottom and left edges in that order.

The following attributes can be specified to set each side explicitly: trim-top-width,
trim-bottom-width, trim-right-width, trim-left-width.

23.4 Overprint

Overprint mode can be enabled for the entire page by specifying the
ibex:ibex-overprint-stroking, ibex:overprint-nonstroking and ibex:overprint-mode
attributes as shown in Figure 23-4.

Figure 23-4: <si npl e- page- nast er page- hei ght ="313mm¥" page- wi dt h="226nmt
tting th int Master- nane_z" page" i bex; overprint-st roki ng="t r ue"
Setting the overprin i bex: overprint-nonstroking="true" ibex:overprint-node="1">

mode

PDF/X 153

154 PDF/X

	1 Introduction
	1.1 The PDF creation process
	1.2 Terminology
	1.3 About this manual
	1.4 About Ibex

	2 Installation
	2.1 Ibex for .Net 6, .Net 7, .Net 8, .Net 9, .Net 10
	2.1.1 Ibex.PDF.Creator
	2.1.2 Ibex.CommandLine

	2.2 Installation for .Net Framework 4.8
	2.2.1 Creating a Project
	2.2.2 Adding the Ibex component
	2.2.3 Adding Code
	2.2.4 Testing

	3 Getting Started with Ibex
	3.1 Ibex command line program usage
	3.2 Error logging
	3.3 An example without XSLT translation
	3.4 An example with XSLT translation
	3.5 Required skills

	4 Introduction to XSL-FO
	4.1 Layout of an FO file
	4.1.1 Namespaces
	4.1.2 The root element
	4.1.3 The layout-master-set element
	4.1.4 The page-sequence element

	4.2 Adding a footer region
	4.3 Attribute processing
	4.4 Adding content to the footer
	4.5 Adding the page number to the footer
	4.6 Adding the total page count to the footer
	4.7 Adding text content
	4.8 Using borders and padding
	4.9 Creating lists
	4.10 Creating tables
	4.10.1 Setting table column widths

	5 Using Ibex
	5.1 Ibex command line program
	5.1.1 XSLT translation
	5.1.2 Logging from the command line
	5.1.3 Listing available fonts

	5.2 The Ibex API
	5.2.1 Generating to File
	5.2.2 Generating using streams
	5.2.3 Generating a PDF from XML and XSL
	5.2.4 Generate a PDF from XML and XSL with parameters

	6 Error Handling & Logging
	6.1 Error severity
	6.2 Logging to a file
	6.3 Logging to a stream
	6.4 Logging to multiple destinations

	7 Page Layout
	7.1 Using one layout for all pages
	7.2 Using different layouts for different pages
	7.2.1 Using different page masters for each page sequence
	7.2.2 Using page master alternatives

	8 Text Formatting
	8.1 Using the font attribute
	8.2 Using the font-family attribute
	8.3 Italic text
	8.4 Bold text
	8.5 Text size
	8.6 Underlining text
	8.7 Striking out text
	8.8 Horizontal alignment
	8.8.1 Justifying the last line of a paragraph

	8.9 Left and right margins
	8.10 Spacing between letters
	8.11 Spacing before and after words
	8.12 Forcing a line break
	8.13 Space at the start of a line
	8.14 Vertical alignment
	8.14.1 The effect of subscript and superscript text on line spacing
	8.14.2 The baseline
	8.14.3 Subscript and superscript

	8.15 Line stacking strategies
	8.16 Aligning images
	8.16.1 The before-edge baseline

	9 Fonts
	9.1 How Ibex uses fonts

	10 Floats
	10.1 How the float width is calculated

	11 Space Handling
	11.1 Linefeeds and carriage returns
	11.2 Default treatment of linefeeds and spaces
	11.3 Using linefeeds to break text
	11.4 Retaining spaces
	11.5 Non-breaking spaces

	12 Colors
	12.1 Text color
	12.2 Background color
	12.3 Available colors
	12.3.1 Predefined colors
	12.3.2 Hexadecimal RGB colors
	12.3.3 CMYK colors
	12.3.4 PDF/X color profiles

	13 Lists
	13.1 Bulleted lists

	14 Tables
	14.1 Cell padding
	14.2 Cell background color
	14.3 Cell background images
	14.4 Implicit and explicit rows
	14.5 Table columns
	14.6 Proportional column widths
	14.7 Spanning columns and rows
	14.8 Cell separation
	14.9 Table headers
	14.10 Table footers
	14.11 Behavior at page breaks
	14.11.1 Repeating headers
	14.11.2 Repeating footers
	14.11.3 Repeating table borders

	14.12 Table continuation markers
	14.13 Aligning columns at the decimal point

	15 Images
	15.1 Image basics
	15.2 Making an image fit a specified space
	15.3 Clipping
	15.4 Image size and alignment
	15.4.1 Leading

	15.5 Image resolution
	15.6 Image anti-aliasing
	15.7 Loading an image from memory
	15.8 Transparent Images
	15.8.1 Transparent GIF images
	15.8.2 Transparent PNG images
	15.8.3 Transparent images using masking
	15.8.4 Transparent Images using SVG

	15.9 Network credentials used in accessing images
	15.10 Multi-page TIFF image processing

	16 Scalable Vector Graphics (SVG) images
	16.1
	16.2 Namespaces
	16.3 Image size
	16.4 Summary of supported elements
	16.4.1 <svg>
	16.4.2 <g>
	16.4.3 <defs>
	16.4.4 <desc>
	16.4.5 <title>
	16.4.6 <symbol>
	16.4.7 <use>
	16.4.8 <image>
	16.4.9 <switch>
	16.4.10 <path>
	16.4.10.1 Path line join shapes

	16.4.11 <style>
	16.4.12 <rect>
	16.4.13 <circle>
	16.4.14 <ellipse>
	16.4.15 <line>
	16.4.15.1 Line end shapes
	16.4.15.2 Dashed lines

	16.4.16 <polyline>
	16.4.17 <polygon>
	16.4.18 <text>
	16.4.19 <tspan>
	16.4.20 <textpath>
	16.4.21 <pattern>

	16.5 Opacity
	16.6 Markers
	16.7 Linear gradients
	16.8 Radial gradients

	17 Absolute Positioning
	17.1 Positioning block-containers
	17.2 Positioning and sizing block containers

	18 Columns
	19 Bookmarks
	20 Configuration
	20.1 Fonts
	20.2 Line height
	20.3 Page size
	20.4 Include paths
	20.5 Images
	20.6 Border widths
	20.7 Layout
	20.8 Leaders

	21 Extensions
	21.1 Document security
	21.1.1 40 bit encryption security options
	21.1.2 128 bit encryption security options

	21.2 Standard document properties
	21.3 Custom Document Properties
	21.4 Image processing
	21.4.1 Image resolution
	21.4.2 Anti-aliasing
	21.4.3 Multi-page TIFF image processing

	21.5 Bookmarks
	21.6 Document base URL
	21.7 Ibex version
	21.8 PDF/X
	21.9 Viewer Preferences

	22 Accessiblity and PDF/UA
	22.1 Enabling PDF/UA Creation
	22.2 Headers
	22.3 Tables
	22.4 Lists
	22.5 Static Content
	22.6 Image Alt Tags
	22.7 WCAG Requirements
	22.7.1 PDF1: Applying text alternatives to images with the Alt entry in PDF documents
	22.7.2 PDF2: Creating bookmarks in PDF documents
	22.7.3 PDF3: Ensuring correct tab and reading order in PDF documents
	22.7.4 PDF4: Hiding decorative images with the Artifact tag in PDF documents
	22.7.5 PDF5: Indicating required form controls in PDF forms
	22.7.6 PDF6: Using table elements for table markup in PDF Documents
	22.7.7 PDF7: Performing OCR on a scanned PDF document to provide actual text
	22.7.8 PDF8: Providing definitions for abbreviations via an E entry for a structure element
	22.7.9 PDF9: Providing headings by marking content with heading tags in PDF documents
	22.7.10 PDF10: Providing labels for interactive form controls in PDF documents
	22.7.11 PDF11: Providing links and link text using the Link annotation and the /Link structure element in PDF documents
	22.7.12 PDF12: Providing name, role, value information for form fields in PDF documents
	22.7.13 PDF13: Providing replacement text using the /Alt entry for links in PDF documents
	22.7.14 PDF14: Providing running headers and footers in PDF documents
	22.7.15 PDF15: Providing submit buttons with the submit-form action in PDF forms
	22.7.16 PDF16: Setting the default language using the /Lang entry in the document catalog of a PDF document
	22.7.17 PDF17: Specifying consistent page numbering for PDF documents
	22.7.18 PDF18: Specifying the document title using the Title entry in the document information dictionary of a PDF document
	22.7.19 PDF19: Specifying the language for a passage or phrase with the Lang entry in PDF documents
	22.7.20 PDF20: Using Adobe Acrobat Pro's Table Editor to repair mistagged tables
	22.7.21 PDF21: Using List tags for lists in PDF documents
	22.7.22 PDF22: Indicating when user input falls outside the required format or values in PDF forms
	22.7.23 PDF23: Providing interactive form controls in PDF documents

	23 PDF/X
	23.1 Media box
	23.2 Bleed box
	23.3 Trim box
	23.4 Overprint

